Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility

  1. Kondrashina, Alina 2
  2. Arranz Gutiérrez, Elena María 3
  3. Cilla Tatay, Antonio 5
  4. Faria, Miguel A. 9
  5. Santos-Hernández, Marta 4
  6. Miralles Buraglia, Beatriz 10
  7. Hashemi, Negin 1
  8. Rasmussen, Martin Krøyer 1
  9. Young, Jette F. 1
  10. Barberá Sáez, Reyes 5
  11. Mamone, Gianfranco 8
  12. Tomás-Cobos, Lidia 11
  13. Bastiaan-Net, Shanna 7
  14. Corredig, Milena 1
  15. Giblin, Linda 6
  1. 1 Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
  2. 2 Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
  3. 3 Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
  4. 4 Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, UK
  5. 5 Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
  6. 6 Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
  7. 7 Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
  8. 8 Institute of Food Sciences - National Research Council, Avellino, Italy
  9. 9 LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
  10. 10 Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
  11. 11 In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
Revista:
Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 1549-7852

Año de publicación: 2023

Páginas: 1-19

Tipo: Artículo

DOI: 10.1080/10408398.2023.2214628 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Critical Reviews in Food Science and Nutrition

Objetivos de desarrollo sostenible

Resumen

As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.

Información de financiación

Referencias bibliográficas

  • 10.3390/foods12061307
  • 10.3746/pnf.2020.25.3.272
  • 10.1080/10717544.2022.2086937
  • 10.1111/j.1476-5381.2011.01589.x
  • 10.1016/j.ijpharm.2015.01.028
  • 10.1016/j.foodres.2017.03.033
  • 10.1016/j.foodres.2023.112815
  • 10.3390/foods10040774
  • 10.1016/j.foodchem.2021.129019
  • 10.1111/ijfs.14023
  • 10.1016/j.ejps.2018.02.032
  • 10.1039/C8FO00155C
  • 10.1016/j.ejpb.2014.01.001
  • 10.1016/j.ejps.2021.105737
  • 10.1038/s41596-018-0119-1
  • 10.1096/fj.05-5404com
  • 10.1073/pnas.090392310
  • 10.1080/09637486.2020.1849039
  • 10.1242/jcs.107.1.213
  • 10.1016/j.foodchem.2008.10.019
  • 10.1111/ijfs.15169
  • 10.1016/j.foodchem.2019.03.009
  • 10.1016/j.jff.2018.08.043
  • 10.1016/j.nutres.2014.04.010
  • 10.1039/c5fo00454c
  • 10.1016/j.jfca.2021.104365
  • 10.1054/bjoc.2001.1976
  • 10.3390/antiox9050368
  • 10.1023/a:1023891320858
  • 10.1016/j.foodchem.2020.127184
  • 10.1007/s00418-017-1539-7
  • 10.1016/j.biocel.2015.10.019
  • 10.3389/fnut.2020.00056
  • 10.1021/acs.jafc.5b01824
  • 10.1016/j.lwt.2020.110780
  • 10.3390/ijms22084275
  • 10.2903/j.efsa.2022.7239
  • 10.1016/j.foodchem.2020.128154
  • 10.1016/S0308-8146(01)00291-6
  • 10.1021/jf981324y
  • 10.1016/j.foodres.2020.109358
  • 10.1016/j.jconrel.2021.05.028
  • 10.3390/nu10070912
  • 10.1208/s12248-021-00665-y
  • 10.1016/j.chemphyslip.2011.06.005
  • 10.1016/0005-2760(91)90136-6
  • 10.3389/fvets.2021.723387
  • 10.3390/ph13120421
  • 10.1093/jn/128.9.1555
  • 10.1080/09637486.2020.1772205
  • 10.1021/mp500776a
  • 10.1038/s41598-019-47851-9
  • 10.1016/j.jff.2021.104497
  • 10.1007/s13228-014-0035-y
  • 10.1592/phco.20.4.270.34882
  • 10.1080/09637480601149640
  • 10.1203/00006450-198808000-00012
  • 10.1002/(SICI)1520-6017(200001)89:1 < 63::AID-JPS7 > 3.0.CO;2-6
  • 10.1136/gut.30.12.1667
  • 10.1042/bj2840595
  • 10.1371/journal.pone.0192964
  • 10.1021/acs.jafc.0c03732
  • 10.1038/nprot.2007.303
  • 10.1038/s41598-019-50360-4
  • 10.1016/j.fct.2016.04.003
  • 10.1016/s0378-5173(01)00897-3
  • 10.1271/bbb.80538
  • 10.1111/jphp.13111
  • 10.1016/j.foodres.2020.109317
  • 10.1021/jf010106t
  • 10.1111/1471-0307.12507
  • 10.1002/mnfr.201600455
  • 10.1007/s11095-017-2327-8
  • 10.1371/journal.pone.0207090
  • 10.1002/glia.20186
  • 10.1016/j.foodchem.2008.11.087
  • 10.1039/d1fo00519g
  • 10.1039/c6fo01411a
  • 10.1016/j.fbp.2021.09.015
  • 10.1007/978-3-319-16104-4_10
  • 10.1021/acs.jafc.2c04238
  • 10.1016/j.foodres.2019.05.022
  • 10.1039/D0FO01981J
  • 10.1016/j.foodchem.2022.132305
  • 10.1016/j.foodres.2022.112326
  • 10.3748/wjg.v9.i11.2474
  • 10.1016/j.tiv.2017.06.018
  • 10.1186/1476-511X-12-48
  • 10.1016/j.chemosphere.2016.06.088
  • 10.1016/j.foodchem.2017.07.145
  • 10.1039/D3FO00535F
  • 10.1002/mnfr.200700503
  • 10.1039/C3FO60702J
  • 10.1016/j.foodchem.2020.128424
  • 10.1016/j.foodres.2020.109948
  • 10.1111/j.1365-2621.2010.02285.x
  • 10.1016/j.xphs.2015.10.030
  • 10.1016/j.ijpharm.2022.122004
  • 10.1080/03639040500465991
  • 10.1021/jf047977y
  • 10.1016/j.foodres.2020.109691
  • 10.1016/j.foodchem.2013.01.063
  • 10.1016/j.idairyj.2021.105046
  • 10.1007/s00441-020-03316-4
  • 10.1016/j.idairyj.2007.09.006
  • 10.1021/bi00334a014
  • Roche Diagnostics GmbH. 2020. Pefabloc® SC PLUS 4-(2-Aminoethyl)-benzenesulfonyl fluoride hydrochloride. Product Information Sheet, 11873601001, Version 09, Nov. 2020. Accessed May 2023.
  • 10.1016/j.jff.2018.03.009
  • 10.1007/s10565-005-0085-6
  • 10.1016/j.foodchem.2018.01.047
  • 10.1016/j.foodchem.2020.127188
  • 10.1039/D1FO00641J
  • 10.1039/c9fo03009c
  • 10.1016/j.foodchem.2015.05.006
  • 10.1016/j.foodchem.2022.134720
  • 10.1016/s0005-2760(98)00068-x
  • 10.3978/j.issn.2305-5839.2015.04.25
  • 10.1002/mnfr.202200132
  • 10.1016/j.tiv.2012.11.018
  • 10.1038/s41598-020-80540-6
  • 10.1021/cb200292c
  • 10.1016/j.foodchem.2015.05.050
  • 10.1016/j.foodres.2022.111238
  • 10.1097/00005176-199302000-00010
  • 10.1016/j.ejps.2014.11.010
  • 10.1021/acs.jafc.0c00321
  • 10.1152/ajpgi.00069.2012
  • 10.1371/journal.pone.0079643
  • 10.3390/nu12082483