Estudio comparativo de la diversidad genética de Mycobacterium tuberculosis complex mediante análisis de polimorfismo de longitud de fragmentos amplificados y número variable de repeticiones en tándem de unidades repetitivas interespaciadas de micobact

  1. Jiménez Arias, Ana Patricia
  2. Lahiguera, María José
  3. Borrás, Rafael
  4. Cardona, Concepción Gimeno
  5. Grijalva Silva, Marcelo
  6. Vallejo López, María José
  7. Guna Serrano, María del Remedio
Revista:
Revista Ecuatoriana de Medicina y Ciencias Biológicas: REMCB

ISSN: 2477-9148 2477-9113

Año de publicación: 2018

Volumen: 39

Número: 1

Páginas: 63-71

Tipo: Artículo

DOI: 10.26807/REMCB.V39I1.568 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista Ecuatoriana de Medicina y Ciencias Biológicas: REMCB

Resumen

Las especies dentro del complejo Mycobacterium tuberculosis (MTB) son genéticamente monomórficas, por lo tanto existe una gran  necesidad de métodos confiables de genotipificación para la comprensión de la epidemiologia de esta enfermedad. Esta investigación evalúa la diversidad genética de una colección española de ochenta y tres aislados mediante el uso de polimorfismo de  longitud de  fragmentos amplificados (AFLP) y número variable de repeticiones en tándem de unidades repetitivas interespaciadas (15-loci MIRU-VNTR). Los resultados obtenidos mostraron 7 patrones de AFLP (P1-P7) cuyos coeficientes de Dice fueron: 71% para P1 vs P7 y 96% para P1 vs P2 y P2 vs P4. MIRU-VNTR demostró 25 patrones únicos y 14 clusters. Los linajes encontrados fueron: Haarlem (23, 36.51%), Cammeroon (2, 3.17%), LAM (12, 19.05%), West African (6, 9.52%) y EAI (1, 1.59%). Los índices de discriminación para AFLP fueron de 0.61 y  0.92 para MIRU-VNTR. En conclusión, este estudio demostró que MIRU-VNTRes robusto y reproducible para genotificar MTB. Adicionalmente, AFLP simplificado es relativamente sencillo de realizar y puede ser útil en el análisis de aislados con recursos limitados

Referencias bibliográficas

  • Citas Achtman M. 2008. Evolution, Population Structure, and Phylogeography of Genetically Monomorphic Bacterial Pathogens. Annu. Rev. Microbiol. 62:53–70. doi:10.1146/annurev.micro.62.081307.162832.
  • Allix-Béguec C, Fauville-Dufaux M, Supply P. 2008. Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 46:1398–1406. doi:10.1128/JCM.02089-07.
  • Alonso-Rodriguez N, Martinez-Lirola M, Herranz M, Sanchez-Benitez M, Barroso P, . I, Bouza E, Garcia de Viedma D. 2008. Evaluation of the new advanced 15-loci MIRU-VNTR genotyping tool in Mycobacterium tuberculosis molecular epidemiology studies. BMC Microbiol. 8:34. doi:10.1186/1471-2180-8-34.
  • Alonso-Rodriguez N, Martínez-Lirola M, Sánchez ML, Herranz M, Peñafiel T, Bonillo MDC, Gonzalez-Rivera M, Martínez J, Cabezas T, Diez-García LF, et al. 2009. Prospective universal application of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping to characterize Mycobacterium tuberculosis isolates for fast identification of clustered and orphan cases. J. Clin. Microbiol. 47:2026–2032. doi:10.1128/JCM.02308-08.
  • Brosch R, Gordon S V., Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, et al. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. 99:3684–3689. doi:10.1073/pnas.052548299.
  • Cattamanchi A, Hopewell PC, Gonzalez LC, Osmond DH, Kawamura LM, Daley CL, Jasmer RM. 2006. A 13-year molecular epidemiological analysis of tuberculosis in San Francisco. Int. J. Tuberc. Lung Dis. 10:297–304.
  • Clark CM, Driver CR, Munsiff SS, Driscoll JR, Kreiswirth BN, Zhao B, Ebrahimzadeh A, Salfinger M, Piatek AS, Abdelwahab J, et al. 2006. Universal genotyping in Tuberculosis Control Program, New York City, 2001-2003. Emerg. Infect. Dis. 12:719–724. doi:10.3201/eid1205.050446.
  • Comas I, Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4:e7815. doi:10.1371/journal.pone.0007815.
  • Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT. 2002. Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J. Clin. Microbiol. 40:1592–1602. doi:10.1128/JCM.40.5.1592-1602.2002.
  • Dillon JAR, Rahman M, Yeung KH. 1993. Discriminatory power of typing schemes based on Simpson’s index of diversity for Neisseria gonorrhoeae. J. Clin. Microbiol. 31:2831–2833.
  • Gaafar A, Unzaga MJ, Cisterna R, Clavo FE, Urra E, Ayarza R, Martín G. 2003. Evaluation of a modified single-enzyme amplified-fragment length polymorphism technique for fingerprinting and differentiating of Mycobacterium kansasii type I isolates. J. Clin. Microbiol. 41:3846–3850. doi:10.1128/JCM.41.8.3846-3850.2003.
  • Gómez MPR, Herrera-León L, Jiménez MS, Rodríguez JG. 2007. Comparison of GenoType® MTBC with RFLP-PCR and multiplex PCR to identify Mycobacterium tuberculosis complex species. Eur. J. Clin. Microbiol. Infect. Dis. 26:63–66. doi:10.1007/s10096-006-0231-y.
  • Goulding JN, Stanley J, Saunders N, Arnold C. 2000. Genome-sequence-based fluorescent amplified-fragment length polymorphism analysis of Mycobacterium tuberculosis. J. Clin. Microbiol. 38:1121–6.
  • Hunter PR, Gaston MA. 1988. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J. Clin. Microbiol. 26:2465–2466. doi:0095-1137/88/112465-02$02.00/0.
  • Iñigo J, García De Viedma D, Arce A, Palenque E, Alonso Rodríguez N, Rodríguez E, Ruiz Serrano MJ, Andrés S, Bouza E, Chaves F. 2007. Analysis of changes in recent tuberculosis transmission patterns after a sharp increase in immigration. J. Clin. Microbiol. 45:63–69. doi:10.1128/JCM.01644-06.
  • Kremer K, Arnold C, Cataldi A, Gutiérrez MC, Haas WH, Panaiotov S, Skuce RA, Supply P, Van Der Zanden AGM, Van Soolingen D. 2005. Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J. Clin. Microbiol. 43:5628–5638. doi:10.1128/JCM.43.11.5628-5638.2005.
  • Lambregts-Van Weezenbeek CSB, Sebek MMGG, Van Gerven PJHJ, De Vries G, Verver S, Kalisvaart NA, Van Soolingen D. 2003. Tuberculosis contact investigation and DNA fingerprint surveillance in The Netherlands: 6 Years’ experience with nation-wide cluster feedback and cluster monitoring. Int. J. Tuberc. Lung Dis. 7:S463-70.
  • Neonakis IK, Gitti Z, Petinaki E, Maraki S, Spandidos DA. 2007. Evaluation of the GenoType MTBC assay for differentiating 120 clinical Mycobacterium tuberculosis complex isolates. Eur. J. Clin. Microbiol. Infect. Dis. 26:151–152. doi:10.1007/s10096-007-0255-y.
  • Richter E, Weizenegger M, Fahr AM, Rüsch-Gerdes S. 2004. Usefulness of the GenoType MTBC assay for differentiating species of the Mycobacterium tuberculosis complex in cultures obtained from clinical specimens. J. Clin. Microbiol. 42:4303–4306. doi:10.1128/JCM.42.9.4303-4306.2004.
  • Richter E, Weizenegger M, Rüsch-Gerdes S, Niemann S. 2003. Evaluation of genotype MTBC assay for differentiation of clinical Mycobacterium tuberculosis complex isolates. J. Clin. Microbiol. 41:2672–2675. doi:10.1128/JCM.41.6.2672-2675.2003.
  • Somoskovi A, Dormandy J, Rivenburg J, Pedrosa M, McBride M, Salfinger M. 2008. Direct comparison of the GenoType MTBC and genomic deletion assays in terms of ability to distinguish between members of the Mycobacterium tuberculosis complex in clinical isolates and in clinical specimens. J. Clin. Microbiol. 46:1854–1857. doi:10.1128/JCM.00105-07.
  • Van Soolingen D, Hoogenboezem T, De Haas PEW, Hermans PWM, Koedam MA, Teppema KS, Brennan PJ, Besra GS, Portaels F, Top J, et al. 1997. A Novel Pathogenic Taxon of the Mycobacterium tuberculosis Complex, Canetti: Characterization of an Exceptional Isolate from Africa. Int. J. Syst. Bacteriol. 47:1236–1245. doi:10.1099/00207713-47-4-1236.
  • Supply P. 2005. Multilocus Variable Number Tandem Repeat Genotyping of Mycobacterium tuberculosis. :73.
  • Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, De Haas P, Van Deutekom H, Roring S, et al. 2006. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 44:4498–4510. doi:10.1128/JCM.01392-06.
  • Supply P, Lesjean S, Savine E, Kremer K, Van Soolingen D, Locht C. 2001. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J. Clin. Microbiol. 39:3563–3571. doi:10.1128/JCM.39.10.3563-3571.2001.
  • Viader-Salvadó JM, Flores-Gracia J, Vega-Alonso AS, Treviño-Alvarado VM, Molina-Torres CA, Vera-Cabrera L, Guerrero-Olazarón M. 2009. Simplified amplified-fragment length polymorphism method for genotyping Mycobacterium tuberculosis isolates. J. Microbiol. Methods 78:331–338. doi:10.1016/j.mimet.2009.07.007.
  • WHO. 2017. Global Tuberculosis Report 2017: Leave no one behind - Unite to end TB.