Drogas emergentescatinonas sintéticas ('sales de baño')

  1. Espert Tortajada, Raúl
  2. Pérez San Miguel, Joana
  3. Gadea Doménech, Marien
  4. Oltra Cucarella, J.
  5. Aliño, Marta
Revista:
Revista española de drogodependencias

ISSN: 0213-7615

Año de publicación: 2015

Número: 2

Páginas: 56-71

Tipo: Artículo

Otras publicaciones en: Revista española de drogodependencias

Resumen

Las catinonas sintéticas son una nueva clase de drogas de diseño de tipo psicoestimulante y alucinógeno y con efectos similares a la cocaína, la metilendioximetanfetamina (MDMA) u otras anfetaminas. El abuso de catinonas sintéticas, con frecuencia incluidas en los productos vendidos como �sales de baño�, se puso de moda a principios de 2009, lo que llevó a la clasificación legislativa en toda Europa en 2010 y a la lista I de clasificación de drogas dentro de los Estados Unidos en 2011. Los estudios clínicos recientes indican que el mecanismo de acción de la catinona sintética afecta a los sistemas centrales de monoaminas. En esta revisión abordaremos la historia de estas drogas, su mecanismo de acción, la toxicología y los aspectos legales.

Referencias bibliográficas

  • Adebamiro, A.; Perazella, M.A. (2012). Recurrent acute kidney injury following bath salts intoxication. American Journal of Kidney Diseases, 59, 273–5.
  • Angoa-Perez, M.; Kane, M.J.; Briggs, D.I.; Francescutti, D.M.; Sykes, C.E.; Shah, M.M.; et al. (2013). Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. Journal of Neurochemistry, 125, 102–10.
  • Baumann, M.H.; Ayestas, Jr. M.A.; Partilla, J.S.; Sink, J.R.; Shulgin, A.T.; Daley, P.F.; et al. (2012). The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 37, 1192–203.
  • Baumann, M.H.; Partilla, J.S.; Lehner, K.R.; Thorndike, E.B.; Hoffman, A.F.; Holy, M.; et al. (2013). Powerful cocaine-like actions of 3,4-Methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology, 38, 552–62.
  • BBC. (2009). New ‘legal high’ arrives in area. British Broadcasting Corporation.
  • Borek, H.A.; Holstege, C.P. (2012). Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methyl-enedioxypyrovalerone. Annals of Emergency Medicine, 60, 103–5.
  • Brandt, S.D.; Freeman, S.; Sumnall, H.R.; Measham, F.; Cole, J. (2011). Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Testing and Analysis, 3, 569–75.
  • Brunt, T.M.; Poortman, A.; Niesink, R.J.; van den Brink, W. (2011). Instability of the ecstasy market and a new kid on the block: Mephedrone. Journal of Psychopharmacology, 25, 1543–7.
  • Capriola, M. (2013). Synthetic cathinone abuse. Clinical Pharmacology: Advances and Applications. Dove press journal, 5, 109–115.
  • Carhart-Harris, R.L.; King, L.A.; Nutt, D.J. (2011). A web-based survey on mephedrone. Drug and Alcohol Dependence, 118, 19–22.
  • Centers AAoPC (2012). Bath salts data. In: Centers AAoPC, editor. Dargan, P.I.; Albert, S.; Wood, D.M. (2010). Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. Quarterly Journal of Medicine, 103, 875–9.
  • Davies, S.; Wood, D.M.; Smith, G.; Button, J.; Ramsey, J.; Archer, R.; et al. (2010). Purchasing ‘legal highs’ on the internet—is there consistency in what you get? Quarterly Journal of Medicine, 103, 489–93.
  • Den Hollander, B.; Rozov, S.; Linden, A.M.; Uusi-Oukari, M.; Ojanpera, I.; Korpi, E.R. (2013). Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacology Biochemistry and Behavior, 103, 501–9.
  • Emerson, T.S.; Cisek, J.E. (1993). Methcathinone: a Russian designer amphetamine infiltrates the rural midwest. Annals of Emergency Medicine, 22, 1897–903.
  • Fantegrossi, W.E.; Gannon, B.M.; Zimmerman, S.M.; Rice, K.C. (2013). In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology, 38, 563–73.
  • Fleckenstein, A.E.; Volz, T.J.; Riddle, E.L.; Gibb, J.W.; Hanson, G.R. (2004). New insights into the mechanism of action of amphetamines. Annual Review of Pharmacology and Toxicolog, 47, 681–98.
  • Forrester, M.B. (2013). Adolescent synthetic cathinone exposures reported to Texas poison centers. Pediatrics Emergency Care, 29, 151–5.
  • Freeman, T.P.; Morgan, C.J.; Vaughn-Jones, J.; Hussain, N.; Karimi. K.; Curran, H.V. (2012). Cognitive and subjective effects of mephedrone and factors influencing use of a ‘new legal high’. Addiction, 107, 792–800.
  • Freudenmann, R.W.; Oxler, F.; Bernschneider-Reif, S. (2006). The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents. Addiction, 101, 1241–5.
  • Gebissa, E. (2010). Khat in the Horn of Africa: historical perspectives and current trends. Journal of Ethnopharmacology, 132, 607–14.
  • German, G.L.; Fleckenstein, A.E.; Hanson, G.R. (2014) Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sciences, 97: 2-8.
  • Gregg, R.; Rawls, S. (2014). Behavioral pharmacology of designer cathinones: A review of the preclinical literature. Life Sciences, 97, 27–30.
  • Hadlock, G.C.; Webb, K.M.; McFadden, L.M.; Chu, P.W.; Ellis, J.D.; Allen, S.C.; et al. (2011). 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. Journal of Pharmacology and Experimental Therapeutics, 339, 530–6.
  • Henderson, G.L. (1988). Designer drugs: past history and future prospects. Journal of Forensic Sciences, 33, 569–75.
  • James, D.; Adams, R.D.; Spears, R.; Cooper, G.; Lupton, D.J.; Thompson, J.P.; et al. (2011). Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emergency Medicine Journal, 28, 686–9.
  • Kalix, P. (1981). Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology, 74, 269–70.
  • Kasick, D.P.; McKnight, C.A.; Klisovic, E. (2012). “Bath salt” ingestion leading to severe intoxication delirium: two cases and a brief review of the emergence of mephedrone use. The American Journal of Drug and Alcohol Abuse, 38, 176–80.
  • Kavanagh, P.; O’Brien, J.; Power, J.D.; Talbot, B.; McDermott, S.D. (2013). ‘Smoking’ mephedrone: the identification of the pyrolysis products of 4-methylmethcathinone hydrochloride. Drug Testing Analysis, 5, 291–305.
  • Kehr, J.; Ichinose, F.; Yoshitake, S.; Goiny, M.; Sievertsson, T.; Nyberg, F.; et al. (2011). Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. British Journal of Pharmacology, 164, 1949–58.
  • Kram, T.C.; Cooper, D.A.; Allen, A.C. (1981). Behind the identification of China White. Analytical Chemistry, 53, 1379A–86A.
  • Levine, M.; Levitan, R.; Skolnik, A. (2013). Compartment syndrome after “bath salts” use: a case series. Annals of Emergency Medicine, 61, 480–3.
  • Marinetti, L.J.; Antonides, H.M. (2013). Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. Journal of Analytical Toxicology, 37, 135–46.
  • Marusich, J.A.; Grant, K.R.; Blough. B.E.; Wiley, J.L. (2012). Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology, 33, 1305–13.
  • Mas-Morey, P.; Visser, M.H.; Winkelmolen, L.; Touw, D.J. (2013). Clinical toxicology and management of intoxications with synthetic cathinones (“bath salts”). Journal of Pharmacy Practice, 26, 353–7.
  • Miotto, K.; Striebel, J.; Cho, A.; Wang, C. (2013). Clinical and pharmacological aspects of bath salt use: A review of the literature and case reports. Drug and Alcohol Dependence, 132, 1– 12.
  • Mixmag (2012). Mixmag’s drug survey: the results. Available from: http://www.mixmag.net/drugssurvey.
  • Morris, H. (2010). Mephedrone: the phantom menace. Vice, 98–100.
  • Motbey, C.P.; Karanges, E.; Li, K.M.; Wilkinson, S.; Winstock, A.R.; Ramsay, J.; et al. (2012). Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS One, 7:e45473.
  • Murray, B.L.; Murphy, C.M.; Beuhler, M.C. (2012). Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). Journal of Medical Toxicology, 8, 69–75.
  • Prosser, J.M.; Nelson, L.S. (2011). The Toxicology of Bath Salts: A Review of Synthetic Cathinones. Journal of Medical Toxicology, 8, 33–42.
  • Ross, E.A.; Reisfield, G.M.; Watson, M.C.; Chronister, C.W.; Goldberger, B.A. (2012). Psychoactive “bath salts” intoxication with methylenedioxypyrovalerone. American Journal of Medicine, 125, 854–8.
  • Sanchez, SdB. (1929). Sur un homologue de l’ephedrine. Bulletin de la Société Chimique de France, 45, 284–6.
  • Schifano, F.; Albanese, A.; Fergus, S.; Stair, J.L.; Deluca, P.; Corazza, O. (2011). Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl). 214, 593–602.
  • Schifano, F.; Corkery, J.; Ghodse, A.H. (2012). Suspected and confirmed fatalities associated with mephedrone (4-methylmeth-cathinone, “meow meow”) in the United Kingdom. Journal of Clinical Psychopharmacology, 32, 710–4.
  • Shalev, A.; Munitz, H. (1986). The neuroleptic malignant syndrome: agent and host interaction. Acta Psychiatrica Scandinavica, 73, 337–47.
  • Spiller, H.A.; Ryan, M.L.; Weston, R.G.; Jansen, J. (2011). Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clinical Toxicology, 49, 499–505.
  • Stoica, M.V.; Felthous, A.R. (2013). Acute psychosis induced by bath salts: a case report with clinical and forensic implications. Journal of Forensic Sciences, 58, 530–3.
  • Thornton, S.L.; Gerona, R.R.; Tomaszewski, C.A. (2012). Psychosis from a bath salt product containing flephedrone and MDPV with serum, urine, and product quantification. Journal of Medical Toxicology, 8, 310–3.
  • U.S. Drug Enforcement Administration OoDC (2012). National Forensic Laboratory Information System: year 2011 annual report. In: Administration USDE, editor. Springfield, VA.
  • Watterson, L.R.; Kufahl, P.R.; Nemirovsky, N.E.; Sewalia, K.; Grabenauer, M.; Thomas B.F.; et al. (2012). Potent rewarding and reinforcing effects of the synthetic cathinone 3,4- methylenedioxypyrovalerone (MDPV). Addiction Biology, 19 (2), 165-174.
  • Wiegand, T.J.;Wax, P.M.; Schwartz, T.; Finkelstein, Y.; Gorodetsky, R.; Brent, J.; et al. (2012). The Toxicology Investigators Consortium Case Registry—the 2011 experience. Journal of Medical Toxicology, 8, 360–77.
  • Winstock, A.; Mitcheson, L.; Ramsey, J.; Davies, S.; Puchnarewicz, M.; Marsden, J. (2011). Mephedrone: use, subjective effects and health risks. Addiction, 106, 1991–6.
  • Wood, D.M.; Hunter. L.; Measham, F.; Dargan, P.I. (2012). Limited use of novel psychoactive substances in South London night clubs. Quarterly Journal of Medicine, 105, 959–64.
  • Wright, Jr. M.J.; Angrish, D.; Aarde, S.M.; Barlow, D.J.; Buczynski, M.W.; Creehan, K.M.; et al. (2012 a). Effect of ambient temperatura on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague–Dawley rats. PLoS One, 7, e44652.
  • Wright, Jr. M.J.; Vandewater, S.A.; Angrish, D.; Dickerson, T.J.; Taffe, M.A. (2012). Mephedrone (4-methylmethcathinone) and D-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. British Journal of Pharmacology, 167, 1342–52.
  • Zawilska, J.B. (2014). Mephedrone and other cathinones. Current Opinion in Psychiatry, 27, 256–262.
  • Ziporyn, T. A. (1986). A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 256, 3061–3.