Drogas emergentescatinonas sintéticas ('sales de baño')

  1. Espert Tortajada, Raúl
  2. Pérez San Miguel, Joana
  3. Gadea Doménech, Marien
  4. Oltra Cucarella, J.
  5. Aliño, Marta
Journal:
Revista española de drogodependencias

ISSN: 0213-7615

Year of publication: 2015

Issue: 2

Pages: 56-71

Type: Article

More publications in: Revista española de drogodependencias

Abstract

Synthetic cathinones are a new class of designer drug of the hallucinogenic stimulant type with effects similar to cocaine, methylenedioxymethamphetamine (MDMA) and other amphetamines. The abuse of synthetic cathinones often included in products sold as �bath salts� became fashionable in early 2009, which led to legislative classification across Europe in 2010 and Schedule I drug classification in the USA in 2011. Recent clinical studies indicate that the action mechanism of synthetic cathinone affects the central monoamine systems. In this paper we will review the history of these drugs, their action mechanism, toxicology and legal aspects.

Bibliographic References

  • Adebamiro, A.; Perazella, M.A. (2012). Recurrent acute kidney injury following bath salts intoxication. American Journal of Kidney Diseases, 59, 273–5.
  • Angoa-Perez, M.; Kane, M.J.; Briggs, D.I.; Francescutti, D.M.; Sykes, C.E.; Shah, M.M.; et al. (2013). Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. Journal of Neurochemistry, 125, 102–10.
  • Baumann, M.H.; Ayestas, Jr. M.A.; Partilla, J.S.; Sink, J.R.; Shulgin, A.T.; Daley, P.F.; et al. (2012). The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 37, 1192–203.
  • Baumann, M.H.; Partilla, J.S.; Lehner, K.R.; Thorndike, E.B.; Hoffman, A.F.; Holy, M.; et al. (2013). Powerful cocaine-like actions of 3,4-Methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology, 38, 552–62.
  • BBC. (2009). New ‘legal high’ arrives in area. British Broadcasting Corporation.
  • Borek, H.A.; Holstege, C.P. (2012). Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methyl-enedioxypyrovalerone. Annals of Emergency Medicine, 60, 103–5.
  • Brandt, S.D.; Freeman, S.; Sumnall, H.R.; Measham, F.; Cole, J. (2011). Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Testing and Analysis, 3, 569–75.
  • Brunt, T.M.; Poortman, A.; Niesink, R.J.; van den Brink, W. (2011). Instability of the ecstasy market and a new kid on the block: Mephedrone. Journal of Psychopharmacology, 25, 1543–7.
  • Capriola, M. (2013). Synthetic cathinone abuse. Clinical Pharmacology: Advances and Applications. Dove press journal, 5, 109–115.
  • Carhart-Harris, R.L.; King, L.A.; Nutt, D.J. (2011). A web-based survey on mephedrone. Drug and Alcohol Dependence, 118, 19–22.
  • Centers AAoPC (2012). Bath salts data. In: Centers AAoPC, editor. Dargan, P.I.; Albert, S.; Wood, D.M. (2010). Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. Quarterly Journal of Medicine, 103, 875–9.
  • Davies, S.; Wood, D.M.; Smith, G.; Button, J.; Ramsey, J.; Archer, R.; et al. (2010). Purchasing ‘legal highs’ on the internet—is there consistency in what you get? Quarterly Journal of Medicine, 103, 489–93.
  • Den Hollander, B.; Rozov, S.; Linden, A.M.; Uusi-Oukari, M.; Ojanpera, I.; Korpi, E.R. (2013). Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacology Biochemistry and Behavior, 103, 501–9.
  • Emerson, T.S.; Cisek, J.E. (1993). Methcathinone: a Russian designer amphetamine infiltrates the rural midwest. Annals of Emergency Medicine, 22, 1897–903.
  • Fantegrossi, W.E.; Gannon, B.M.; Zimmerman, S.M.; Rice, K.C. (2013). In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology, 38, 563–73.
  • Fleckenstein, A.E.; Volz, T.J.; Riddle, E.L.; Gibb, J.W.; Hanson, G.R. (2004). New insights into the mechanism of action of amphetamines. Annual Review of Pharmacology and Toxicolog, 47, 681–98.
  • Forrester, M.B. (2013). Adolescent synthetic cathinone exposures reported to Texas poison centers. Pediatrics Emergency Care, 29, 151–5.
  • Freeman, T.P.; Morgan, C.J.; Vaughn-Jones, J.; Hussain, N.; Karimi. K.; Curran, H.V. (2012). Cognitive and subjective effects of mephedrone and factors influencing use of a ‘new legal high’. Addiction, 107, 792–800.
  • Freudenmann, R.W.; Oxler, F.; Bernschneider-Reif, S. (2006). The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents. Addiction, 101, 1241–5.
  • Gebissa, E. (2010). Khat in the Horn of Africa: historical perspectives and current trends. Journal of Ethnopharmacology, 132, 607–14.
  • German, G.L.; Fleckenstein, A.E.; Hanson, G.R. (2014) Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sciences, 97: 2-8.
  • Gregg, R.; Rawls, S. (2014). Behavioral pharmacology of designer cathinones: A review of the preclinical literature. Life Sciences, 97, 27–30.
  • Hadlock, G.C.; Webb, K.M.; McFadden, L.M.; Chu, P.W.; Ellis, J.D.; Allen, S.C.; et al. (2011). 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. Journal of Pharmacology and Experimental Therapeutics, 339, 530–6.
  • Henderson, G.L. (1988). Designer drugs: past history and future prospects. Journal of Forensic Sciences, 33, 569–75.
  • James, D.; Adams, R.D.; Spears, R.; Cooper, G.; Lupton, D.J.; Thompson, J.P.; et al. (2011). Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emergency Medicine Journal, 28, 686–9.
  • Kalix, P. (1981). Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology, 74, 269–70.
  • Kasick, D.P.; McKnight, C.A.; Klisovic, E. (2012). “Bath salt” ingestion leading to severe intoxication delirium: two cases and a brief review of the emergence of mephedrone use. The American Journal of Drug and Alcohol Abuse, 38, 176–80.
  • Kavanagh, P.; O’Brien, J.; Power, J.D.; Talbot, B.; McDermott, S.D. (2013). ‘Smoking’ mephedrone: the identification of the pyrolysis products of 4-methylmethcathinone hydrochloride. Drug Testing Analysis, 5, 291–305.
  • Kehr, J.; Ichinose, F.; Yoshitake, S.; Goiny, M.; Sievertsson, T.; Nyberg, F.; et al. (2011). Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. British Journal of Pharmacology, 164, 1949–58.
  • Kram, T.C.; Cooper, D.A.; Allen, A.C. (1981). Behind the identification of China White. Analytical Chemistry, 53, 1379A–86A.
  • Levine, M.; Levitan, R.; Skolnik, A. (2013). Compartment syndrome after “bath salts” use: a case series. Annals of Emergency Medicine, 61, 480–3.
  • Marinetti, L.J.; Antonides, H.M. (2013). Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. Journal of Analytical Toxicology, 37, 135–46.
  • Marusich, J.A.; Grant, K.R.; Blough. B.E.; Wiley, J.L. (2012). Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology, 33, 1305–13.
  • Mas-Morey, P.; Visser, M.H.; Winkelmolen, L.; Touw, D.J. (2013). Clinical toxicology and management of intoxications with synthetic cathinones (“bath salts”). Journal of Pharmacy Practice, 26, 353–7.
  • Miotto, K.; Striebel, J.; Cho, A.; Wang, C. (2013). Clinical and pharmacological aspects of bath salt use: A review of the literature and case reports. Drug and Alcohol Dependence, 132, 1– 12.
  • Mixmag (2012). Mixmag’s drug survey: the results. Available from: http://www.mixmag.net/drugssurvey.
  • Morris, H. (2010). Mephedrone: the phantom menace. Vice, 98–100.
  • Motbey, C.P.; Karanges, E.; Li, K.M.; Wilkinson, S.; Winstock, A.R.; Ramsay, J.; et al. (2012). Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS One, 7:e45473.
  • Murray, B.L.; Murphy, C.M.; Beuhler, M.C. (2012). Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). Journal of Medical Toxicology, 8, 69–75.
  • Prosser, J.M.; Nelson, L.S. (2011). The Toxicology of Bath Salts: A Review of Synthetic Cathinones. Journal of Medical Toxicology, 8, 33–42.
  • Ross, E.A.; Reisfield, G.M.; Watson, M.C.; Chronister, C.W.; Goldberger, B.A. (2012). Psychoactive “bath salts” intoxication with methylenedioxypyrovalerone. American Journal of Medicine, 125, 854–8.
  • Sanchez, SdB. (1929). Sur un homologue de l’ephedrine. Bulletin de la Société Chimique de France, 45, 284–6.
  • Schifano, F.; Albanese, A.; Fergus, S.; Stair, J.L.; Deluca, P.; Corazza, O. (2011). Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl). 214, 593–602.
  • Schifano, F.; Corkery, J.; Ghodse, A.H. (2012). Suspected and confirmed fatalities associated with mephedrone (4-methylmeth-cathinone, “meow meow”) in the United Kingdom. Journal of Clinical Psychopharmacology, 32, 710–4.
  • Shalev, A.; Munitz, H. (1986). The neuroleptic malignant syndrome: agent and host interaction. Acta Psychiatrica Scandinavica, 73, 337–47.
  • Spiller, H.A.; Ryan, M.L.; Weston, R.G.; Jansen, J. (2011). Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clinical Toxicology, 49, 499–505.
  • Stoica, M.V.; Felthous, A.R. (2013). Acute psychosis induced by bath salts: a case report with clinical and forensic implications. Journal of Forensic Sciences, 58, 530–3.
  • Thornton, S.L.; Gerona, R.R.; Tomaszewski, C.A. (2012). Psychosis from a bath salt product containing flephedrone and MDPV with serum, urine, and product quantification. Journal of Medical Toxicology, 8, 310–3.
  • U.S. Drug Enforcement Administration OoDC (2012). National Forensic Laboratory Information System: year 2011 annual report. In: Administration USDE, editor. Springfield, VA.
  • Watterson, L.R.; Kufahl, P.R.; Nemirovsky, N.E.; Sewalia, K.; Grabenauer, M.; Thomas B.F.; et al. (2012). Potent rewarding and reinforcing effects of the synthetic cathinone 3,4- methylenedioxypyrovalerone (MDPV). Addiction Biology, 19 (2), 165-174.
  • Wiegand, T.J.;Wax, P.M.; Schwartz, T.; Finkelstein, Y.; Gorodetsky, R.; Brent, J.; et al. (2012). The Toxicology Investigators Consortium Case Registry—the 2011 experience. Journal of Medical Toxicology, 8, 360–77.
  • Winstock, A.; Mitcheson, L.; Ramsey, J.; Davies, S.; Puchnarewicz, M.; Marsden, J. (2011). Mephedrone: use, subjective effects and health risks. Addiction, 106, 1991–6.
  • Wood, D.M.; Hunter. L.; Measham, F.; Dargan, P.I. (2012). Limited use of novel psychoactive substances in South London night clubs. Quarterly Journal of Medicine, 105, 959–64.
  • Wright, Jr. M.J.; Angrish, D.; Aarde, S.M.; Barlow, D.J.; Buczynski, M.W.; Creehan, K.M.; et al. (2012 a). Effect of ambient temperatura on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague–Dawley rats. PLoS One, 7, e44652.
  • Wright, Jr. M.J.; Vandewater, S.A.; Angrish, D.; Dickerson, T.J.; Taffe, M.A. (2012). Mephedrone (4-methylmethcathinone) and D-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. British Journal of Pharmacology, 167, 1342–52.
  • Zawilska, J.B. (2014). Mephedrone and other cathinones. Current Opinion in Psychiatry, 27, 256–262.
  • Ziporyn, T. A. (1986). A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 256, 3061–3.