JOAN
VILA FRANCES
TITULAR DE UNIVERSIDAD
JOSE DAVID
MARTIN GUERRERO
CATEDRÁTICO/A DE UNIVERSIDAD
Publicacións nas que colabora con JOSE DAVID MARTIN GUERRERO (13)
2016
-
Online fitted policy iteration based on extreme learning machines
Knowledge-Based Systems, Vol. 100, pp. 200-211
2015
-
Improving Mortality Prediction in Cardiovascular Risk Patients by Balancing Classes
Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
2014
-
Ensembles of extreme learning machine networks for value prediction
22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2014 - Proceedings
-
Optimization of anemia treatment in hemodialysis patients via reinforcement learning
Artificial Intelligence in Medicine, Vol. 62, Núm. 1, pp. 47-60
2013
-
ManiSonS: A new visualization tool for manifold clustering
ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
2012
-
Extended visualization method for classification trees
ESANN 2012 proceedings, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
2011
-
Adaptive treatment of anemia on hemodialysis patients: A reinforcement learning approach
IEEE SSCI 2011: Symposium Series on Computational Intelligence - CIDM 2011: 2011 IEEE Symposium on Computational Intelligence and Data Mining
-
Growing hierarchical sectors on sectors
ESANN 2011 - 19th European Symposium on Artificial Neural Networks
2010
-
Growing hierarchical sectors on sectors
ESANN 2011 proceedings, 19th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
2006
-
Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function
Neurocomputing, Vol. 69, Núm. 7-9 SPEC. ISS., pp. 909-912
-
Enhancing decision-based neural networks through local competition
Neurocomputing, Vol. 69, Núm. 7-9 SPEC. ISS., pp. 905-908
-
Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration
Atmospheric Environment, Vol. 40, Núm. 32, pp. 6173-6180
-
Non-linear RLS-based algorithm for pattern classification
Signal Processing, Vol. 86, Núm. 5, pp. 1104-1108