Relación entre determinados usos de la inteligencia artificial y los riesgos psicosociales en entornos laborales europeos

  1. Payá Castiblanque, Raúl 1
  2. Pizzi, Alejandro 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revue:
Archivos de prevención de riesgos laborales

ISSN: 1138-9672 1578-2549

Année de publication: 2024

Volumen: 27

Número: 3

Pages: 233-249

Type: Article

DOI: 10.12961/APRL.2024.27.03.02 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Archivos de prevención de riesgos laborales

Résumé

Introducción: Examinar la relación entre el uso de la inteligencia artificial (IA) para evaluar y controlar el rendimiento laboral y los riesgos psicosociales, así como los daños a la salud asociados en el medio laboral europeo. Método: Estudio transversal con los microdatos de la encuesta de 2022 “Occupational Safety and Health in Post-Pandemic Workplaces (Flash Eurobarometer)” (EU-OSHA) con 27252 participantes. Tras seleccionar 12 variables dicotómicas dependientes (riesgos psicosociales y daños a la salud) y la presencia de IA y sus usos para la supervisión y valoración del rendimiento de los trabajadores como variables independientes, se calcularon las odds ratio crudas (ORc) y ajustadas (ORa) por covariables sociodemográficas, y sus correspondientes intervalos de confianza del 95% (IC95%) mediante modelos de regresión logística. Resultados: Cuando la IA es utilizada para supervisar o controlar el rendimiento individual aumenta la presión temporal y la sobrecarga de trabajo (ORa=1.5;IC95%:1.3-1.7), se reduce la autonomía o influencia sobre los procesos de trabajo (ORa=2.2;IC95%:2.1-2.3) y se erosiona la comunicación o cooperación dentro de la organización (ORa=1.5;IC95%:1.4-1.6). También, incrementa la probabilidad de referir estrés, depresión o ansiedad (ORa=1.5;IC95%:1.4-1.5) y accidentes o lesiones (ORa=1.7;IC95%:1.6-1.8). Conclusiones: La IA como "supervisor digital" aumenta la exposición a riesgos psicosociales y la probabilidad de sufrir daños a la salud. Esto destaca la importancia de considerar el bienestar de las personas trabajadoras junto con la eficiencia económica al implementar IA en la organización del trabajo. Estos resultados pueden guiar políticas laborales para equilibrar la optimización de procesos con entornos laborales saludables mediante el diálogo social.

Références bibliographiques

  • Deranty JP, Corbin T. Artificial intelligence and work: a critical review of recent research from the social sciences. AI & Soc. 2022;39:675–691. https://doi.org/10.1007/s00146-022-01496-x
  • Jarota M. Artificial intelligence in the work process. A reflection on the proposed European Union regulations on artificial intelligence from an occupational health and safety perspective. Computer Law & Security Review. 2023;49:105825. https://doi.org/10.1016/j.clsr.2023.105825
  • Jetha A, Bakhtari H, Rosella LC, Gignac MAM, Biswas A, Shahidi FV, et al. Artificial intelligence and the work–health interface: aresearch agenda for a technologically transforming world ofwork. Am J Ind Med. 2023;66:815?830. https://doi.org/10.1002/ajim.23517
  • Agrawal A, Gans J, Goldfarb A. Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Press; 2018. 320 p.
  • Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 3rd rev.ed. Pearson Education, Inc; 2010. 1151 p. Disponible en: https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
  • Dalenogare LS, Benitez GB, Ayala NF, Frank AG. The expected contribution of Industry 4.0 technologies for industrial performance, Int J Prod Econ. 2018;204:383–394. https://doi.org/10.1016/j.ijpe.2018.08.019
  • Fettermann D, Cavalcante CGS, Almeida TDD, Tortorella GL. How does Industry 4.0 contribute to operations management?. J Indust Prod Eng. 2018:35(4):255–268. https://doi.org/10.1080/21681015.2018.1462863
  • Cebulla A, Szpak Z, Knight G. Preparing to work with artificial intelligence: assessing WHS when using AI in the workplace. International Journal of Workplace Health Management. 2023;16(4):294-312. https://doi.org/10.1108/IJWHM-09-2022-0141
  • Arana-Landín G, Laskurain-Iturbe I, Iturrate M, Landeta-Manzano B. Assessing the influence of industry 4.0 technologies on occupational health and safety. Heliyon. 2023;9(3):e13720. https://doi.org/10.1016/j.heliyon.2023.e13720
  • Cefaliello A, Moore PV, Donoghue R. Making algorithmic management safe and healthy for workers: Addressing psychosocial risks in new legal provisions. Eur Labour Law J. 2023;14(2):192-210. https://doi.org/10.1177/20319525231167476
  • Zorzenon R, Lizarelli FL, de A Moura DBA. What is the potential impact of industry 4.0 on health and safety at work?. Saf Sci. 2022;153:105802. https://doi.org/10.1016/j.ssci.2022.105802.
  • Moore PV. OSH and the Future of Work: Benefits and Risks of Artificial Intelligence Tools in Workplaces. In: Duffy V, (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion. HCII 2019. Lecture Notes in Computer Science. Springer. 2019; 11581.Disponible en: https://www.springerprofessional.de/en/osh-and-the-future-of-work-benefits-and-risks-of-artificial-inte/16911954
  • Ozanich R. Chem/bio wearable sensors: current and future direction. Pure Appl Chem. 2018;90(10):1605-1613. https://doi.org/10.1515/pac-2018-0105
  • Zuidema C, Stebounova LV, Sousan S, Gray A, Stroh O, Thomas G, et al. Estimating personal exposures from a multi-hazard sensor network. J Expo Sci Environ Epidemiol. 2020;30:1013–1022. https://doi.org/10.1038/s41370-019-0146-1
  • Fanti G, Borghi F, Spinazzè A, Rovelli S, Campagnolo D, Keller M, et al. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors. 2021; 21(13):4513. https://doi.org/10.3390/s21134513
  • Garrity DJ, Yusuf SA. A predictive decision-aid device to warn firefighters of catastrophic temperature increases using an AI-based time-series algorithm. Saf Sci. 2021;138:105237. https://doi.org/10.1016/j.ssci.2021.105237
  • Sattari F, Macciotta R, Kurian D, Lefsrud L. Application of Bayesian network and artificial intelligence to reduce accident/incident rates in oil & gas companies. Saf Sci. 2021;133:104981, https://doi.org/10.1016/j.ssci.2020.104981.
  • Marková P, Prajová V, Homokyová M, Horvathová M. Human factor in industry 4.0 in point of view ergonomics in Slovak Republic. 30th DAAAM international symposium on intelligent manufacturing and automation. 2019:284–289. https://doi.org/10.2507/30th.daaam.proceedings.037
  • Gualtieri L, Rauch E, Vidoni R. Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Rob Comput Integr Manuf. 2021;67:101998, https://doi.org/10.1016/j.rcim.2020.101998
  • Forcina A, Silvestri L, De Felice F, Falcone D. Exploring Industry 4.0 technologies to improve manufacturing enterprise safety management: A TOPSIS-based decision support system and real case study. Saf Sci. 2024;169:106351. https://doi.org/10.1016/j.ssci.2023.106351
  • Yang S, Zhong Y, Feng D, Yi Man Li L, Shao XF, Liu W. Robot application and occupational injuries: Are robots necessarily safer?. Saf Sci. 2022;147: 105623. https://doi.org/10.1016/j.ssci.2021.105623
  • Erol M. Occupational health and work safety systems in compliance with industry 4.0: research directions. International Journal of eBusiness and eGovernment Studies. 2019;11(2):119-33.
  • Adem A, Çakit E, Da?deviren M. Occupational health and safety risk assessment in the domain of Industry 4.0. SN Appl. Sci. 2020;2:977. https://doi.org/10.1007/s42452-020-2817-x
  • Tomprou M, Kyung Lee M. Employment relationships in algorithmic management: A psychological contract perspective. Comput Hum Behav. 2022;126: 106997. https://doi.org/10.1016/j.chb.2021.106997
  • Niehaus S, Hartwig M, Rosen PH, Wischniewski S. An occupational safety and health perspective on human in control and AI. Front Artif Intell. 2022;5:868382. https://doi.org/10.3389/frai.2022.868382
  • Kim PT, Bodie MT. Artificial intelligence and the challenge of workplace discrimination and privacy. ABA J Labor Employ Law. 2021;35(2):289?315.https://www.americanbar.org/content/dam/aba/publications/aba_journal_of_labor_employment_law/v35/no-2/artificial-intelligence.pdf
  • Ajunwa I, Crawford K, Schultz J. Limitless Worker Surveillance. California Law Review. 2017:105(3), 735–776. http://www.jstor.org/stable/44630759
  • Mauno S, Herttalampi M, Minkkinen J, Feldt T, Kubicek B. Is work intensification bad for employees? A review of outcomes for employees over two decades. Work Stress. 2022;1?26. https://doi.org/10.1080/02678373.2022.2080778
  • Riso, S. Employee Monitoring and Surveillance: The Challenges of Digitalisation. Eurofound. 2020. Disponible en: https://www.eurofound.europa.eu/en/publications/2020/employee-monitoring-and-surveillance-challenges-digitalisation
  • Unruh CF, Haid C, Johannes F, Büthe T. Human Autonomy in Algorithmic Management. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (AIES '22). ACM. 2022:753–762. https://doi.org/10.1145/3514094.3534168
  • Howard J. Algorithms and the future of work. Am J Ind Med. 2022;65:943-952. https://doi.org/10.1002/ajim.23429
  • European Agency for Safety and Health at Work (2023). OSH Pulse - Occupational Safety and Health in Post-Pandemic Workplaces (Flash Eurobarometer). GESIS, Cologne. ZA8753 Data file Version 2.0.0, Disponible en: https://search.gesis.org/research_data/ZA8753?doi=10.4232/1.14208
  • Niedhammer I, Bertrais S, Witt K. Psychosocial work exposures and health outcomes: a meta-review of 72 literature reviews with meta-analysis. Scand J Work Environ Health. 2021;47(7):489-508. https://doi.org/10.5271/sjweh.3968
  • Campos-Serna J, Ronda-Pérez E, Artazcoz L, Benavides FG. Desigualdades de género em salud laboral en España. Gac Sanit. 2012;26(4):343–351. 10.1016/j.gaceta.2011.09.025
  • Rigó M, Dragano N, Wahrendorf M, Siegrist J, Lunau T. Work stress on rise? Comparative analysis of trends in work stressors using the European working conditions survey. Int Arch Occup Environ Health. 2021;94: 459-474. https://doi.org/10.1007/s00420-020-01593-8
  • Llorens-Serrano C, Salas-Nicás S, Navarro-Giné A, Moncada Lluís S. Delegation and consultation on operational and tactical issues: Any difference in their potentialities for a healthier psychosocial work environment?. Am J Ind Med. 2022;65(10):800-812. https://doi.org/10.1002/ajim.23414
  • Bérastégui P.Exposure to psychosocial risk factors in the gig economy: A systematic review. ETUI. 2021. Disponible en: https://www.etui.org/publications/exposure-psychosocial-risk-factors-gig-economy
  • Roquelaure Y, Garlantézec R, Evanoff B, Descatha A, Fassier JB, Bodin J. Personal, biomechanical, psychosocial, and organizational risk factors for carpal tunnel syndrome: a structural equation modeling approach. Pain. 2020;161(4):749-757. https://doi.org/10.1097/j.pain.0000000000001766