Visualización del Número de Avogadro

  1. de Julián Ortiz, J. Vicente 1
  2. Pogliani, Lionello 2
  3. Besalú, Emili 3
  1. 1 Department of Physical Chemistry, University of Valencia
  2. 2 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  3. 3 Universitat de Girona
    info

    Universitat de Girona

    Girona, España

    ROR https://ror.org/01xdxns91

Revista:
Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

ISSN: 1888-8550

Año de publicación: 2022

Número: 14

Páginas: 89-105

Tipo: Artículo

DOI: 10.46583/NEREIS_2022.1.1019 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

Resumen

Con motivo de la redefinición de la constante de Avogadro, se presenta una breve historia y algunas reflexiones didácticas sobre su magnitud. Se revisan algunas analogías y se sugieren otras para ayudar a visualizar el alcance de su magnitud y se evalúa su utilidad. Estas analogías se enmarcan en el contexto docente de los cursos primero y segundo de las titulaciones en diversas disciplinas científicas y técnicas. Su efectividad se discute por primera vez sobre la base de un cuestionario realizado por los estudiantes correspondientes. Los resultados sugieren que los modelos más útiles, siguiendo la opinión de los estudiantes, son aquellos relacionados con ítems más sustanciales, por ejemplo, neuronas, individuos, planetas, por encima de analogías sobre construcciones geométricas. Podemos concluir, en contraste el pensamiento actual, que las descripciones visuales no siempre son las más ventajosas.

Referencias bibliográficas

  • Sidney PG, Thompson CA. Implicit analogies in learning: supporting transfer by warming up. Curr. Dir. Psychol. Sci. 2019:28(6):619-625.
  • Shapiro MA. Analogies, visualization, and mental processing of science stories. Ann. Int. Commun. Assoc. 1986:9(1):339-355.
  • López Nomdedeu G. Teoría y práctica de la creatividad. Rev. Esp. Pedagog. 1974:32(128):495-537.
  • Treagust DF, Duit R, Lindauer I, Joslin P. Teachers' use of analogies in their regular teaching routines. Res. Sci. Educ. 1989:19(1):291-299.
  • Treagust DF. The evolution of an approach for using analogies in teaching and learning science. Res. Sci. Educ. 1993:23(1):293-301.
  • Harrison AG. How do teachers and textbook writers model scientific ideas for students? Res. Sci. Educ. 2001:31:401–435.
  • Levinson PJ, Carpenter RL. An analysis of analogical reasoning in children. Child Dev. 1974 857-861.
  • Gentner D. Structure-mapping: a theoretical framework for analogy. Cognitive Sci. 1983:7:155–170.
  • Thiele RB, Treagust DF. Using analogies in secondary chemistry teaching. Obtenido de https://eric.ed.gov/?id=ED356137.
  • Glynn SM. Making science concepts meaningful to students: teaching with analogies. Four Decades of Research in Science Education-from Curriculum Development to Quality Improvement: From Curriculum Development to Quality Improvement, 113. Münster, Germany: Waxmann. 2008
  • Sutton C. Figuring out a scientific understanding. J. Res. Sci. Teach. 1993:31(10):1215-1227.
  • Ruef K. The private eye: (5X) looking/thinking by analogy. Seattle, WA: The Private Eye Project; 1998.
  • Markman AB, Moreau CP. Analogy and analogical comparison in choice. En: Gentner D, Holyoak KJ, Kokinov BN, editores. The analogical mind: Perspectives from Cognitive Science. Cambridge, MA: MIT Press; 2001. P. 363-399.
  • Coll RK, France B, Taylor I. The role of models and analogies in science education: implications from research. Int. J. Sci. Educ. 2005:27:183-198.
  • Aubusson PJ, Harrison AG, Ritchie SM. Metaphor and analogy. En: Metaphor and analogy in science education. Dordrecht: Springer; 2006. p. 1-9.
  • Goswami U. Analogical reasoning in children. En Children's Learning in Laboratory and Classroom Contexts New York, NY: Routledge. 2007. p. 73-88
  • Raviolo A, Garritz A. Analogies in the teaching of chemical equilibrium: a synthesis/analysis of the literature. Chem. Educ. Res. Pract. 2009:10(1):5-13.
  • Mair C, Martincova M, Shepperd M. A literature review of expert problem solving using analogy. En: 13th International Conference on Evaluation & Assessment in Software Engineering, 20-21 April 2009, Durham, UK. 2009
  • Bellocchi A. Learning in the third space: a sociocultural perspective on learning with analogies. Tesis doctoral, Queensland University of Technology, Brisbane, Queensland, Australia; 2009. p. 19-45.
  • Gentner D. Bootstrapping the mind: analogical processes and symbol systems. Cognitive Sci. 2010:34(5), 752-775.
  • Etzion D, Ferraro F. The role of analogy in the institutionalization of sustainability reporting. Organ. Sci. 2010:21(5):1092-1107.
  • Petrucci M. Scientific visualizations: bridge-building between the sciences and the humanities via visual analogy. Interdiscip. Sci. Rev. 2011:36(4):276-300.
  • Klahr D, Chen Z. Finding one’s place in transfer space. Child Dev. Perspect. 2011:5:196–204.
  • Day SB, Goldstone RL. The import of knowledge export: connecting findings and theories of transfer of learning. Educ. Psychol. 2012:47:153–176.
  • Mozzer NB, Justi R. Science teachers’ analogical reasoning. Res. Sci. Educ., 2013:43(4):1689-1713.
  • Vendetti MS, Matlen BJ, Richland LE, Bunge SA. Analogical reasoning in the classroom: insights from Cognitive Science. Mind Brain Educ. 2015:9:100–106.
  • English LD. Analogies, metaphors, and images: vehicles for mathematical reasoning. En: Mathematical Reasoning (pp. 11-26). New York, NY: Routledge. 2013
  • Goh NK, Subramanian R, Chia LSA more direct feeling for Avogadro’s number. J. Chem. Educ., 1994:71(8):656–657.
  • Pekda? B, Azizo?lu N. Semantic mistakes and didactic difficulties in teaching the “amount of substance” concept: a useful model. Chem. Educ. Res. Pract:2013:14(1):117-129.
  • Schmidt H. An alternate path to stoichiometric problem solving. Res. Sci. Educ.1997:27:237.
  • Giunta CJ. The Mole and Amount of Substance in Chemistry and Education: Beyond Official Definitions. J. Chem. Educ. 2015:92(10):1593?1597.
  • Davis RS. What Is a Kilogram in the Revised International System of Units (SI)? J. Chem. Educ. 2015:92(10):1604?1609.
  • Rees S, Kind V, Newton D. The development of chemical language usage by “non-traditional” students: the interlanguage analogy. Res. Sci. Educ., 2018 1-20.
  • Mweshi E, Munyati O, Nachiyunde K. Teacher’s mole concept pedagogical content knowledge: developing the model for the mole concept content representations framework. Chem. Educ. Res. Pract. 2019:10(8):51–65.
  • Furió C, Azcona R, Guisasola J. The learning and teaching of the concepts ‘amount of substance’ and ‘mole’: a review of the literature. Chem. Educ. Res. Pract., 2002:3(3):277–292.
  • Wikipedia. Constante de Avogadro. Obtenido de https://es.wikipedia.org/wiki/Constante_de_Avogadro.
  • Nernst W. Theoretical Chemistry from the Standpoint of Avogadro’s Rule & Thermodynamics. 2nd ed. London: Macmillan & Co. Ltd; 1904. p. 39-42
  • Chang R, Goldsby KA. Chemistry. 12th ed. New York, NY: McGraw Hill Education; 2016. p. 183-184.
  • Cannizzaro, S. (1858). Lettera del prof. Stanislao Cannizzaro al prof.S. De Luca; sunto di un corso di filosofia chimica, fatto nella R. Universita di Genova. Il Nuovo Cimento, 7(1), 321–368.
  • Meyer L. Die modernen Theorien der Chemie und ihre Bedeutung für die chemische Statik, 1st ed. Breslau: Maruschke & Berendt; 1864.
  • Partington JRA Short History of Chemistry:3rd ed. New York: Dover Pub; 1989.
  • Jensen WB. How and when did Avogadro’s name become associated with Avogadro’s number? J. Chem. Educ., 2007:84(2):223.
  • Morselli M. Amedeo Avogadro, a scientific biography Dordrecht, Netherlands: D. Reidel. 1984. p. 87-271.
  • Thompson CA, Opfer JE. How 15 hundred is like 15 cherries: effect of progressive alignment on representational changes in numerical cognition. Child Dev. 2010:81:1768–1786.
  • Poskozim PS, Wazorick JW, Tiempetpaisal P, Poskozim JA. Analogies for Avogadro's number. J. Chem. Educ. 1986:63(2):125.
  • Lubeck HV. How to visualize Avogadro’s number. J. Chem. Educ., 1989:66(9):762.
  • Diemente D. Demonstrations of the enormity of Avogadro’s number. J. Chem. Educ. 1998:75(12):1565.
  • Uthe RE. For mole problems, call Avogadro: 602-1023. J. Chem. Educ., 2002:79(10):1213.
  • Krulwich R. Which is greater, the number of sand grains on earth or stars in the sky? Obtenido de https://www.npr.org/sections/krulwich/2012/09/17/161096233/which-is-greater-the-number-of-sand-grains-on-earth-or-stars-in-the-sky. 2012.
  • European Space Agency How many stars are there in the Universe? Obtenido de http://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe. 2019.
  • Harrison E. Cosmology: The Science of the Universe, 2nd ed. Cambridge University Press: New York, 2000, p. 474
  • National Solar Observatory. Mass size and density of the universe. Obtenido de https://people.cs.umass.edu/~immerman/stanford/universe.html. 2001.
  • Sepp S. Brain games with sand grains. Obtenido de https://www.sandatlas.org/brain-games-with-sand-grains.
  • Pinto G. An example of body-centered cubic crystal structure: the atomium in Brussels as an educative tool for introductory materials chemistry. J. Chem. Educ. 2012:89(7):921-924.
  • Wikipedia. Problema de trigo y tablero de ajedrez. Obtenido de https://es.wikipedia.org/wiki/Problema_del_trigo_y_del_tablero_de_ajedrez.
  • Wikipedia. Población mundial. Obtenido de https://es.wikipedia.org/wiki/Poblaci%C3%B3n_mundial
  • Skorstad J, Falkenhainer B, Gentner D. Analogical processing: a simulation and empirical corroboration. Proc. AAAI 1987:6:322-326.
  • Faries JM, Reiser BJ. Access and use of previous solutions in a problem solving situation (No. CSL-29). Princeton Univ Nj Cognitive Sci. Lab. 1988
  • Duit R. On the role of analogies and metaphors in learning science. Sci. Educ., 1991:75(6):649-672.
  • Duit R. On the role of analogies, similes, and metaphors in learning science. In Papers presented at the Annual Meeting of the American Educational Research Association, Atlanta. 1990
  • Tenney Y, Gentner D. What makes analogies accessible: experiments on the water-flow analogy for electricity. En: Duit R, Jung W, von Rhoneck C, editores. Aspects of understanding electricity. Kiel: IPNiSchmidt & Klaunig; 1985. p. 1-318.
  • Dagher Z. Review of studies on the effectiveness of instructional analogies in science education. Sci. Educ., 1995:79(3):295-312.
  • Piaget J. La evolución de los métodos de enseñanza. En Psicología y pedagogía. Madrid: Sarpe: 1969 p. 95-112.