Validación psicométrica de las subescalas motivacionales del MSLQ en escolares de educación virtual en Cusco, Perú
- Fernández Bringas, Teresa 1
- Sandoval Arteta, Francisco 1
- Ojeda Mercado, Giancarlo 1
- Suarez Guerrero, Cristóbal 2
-
1
Universidad Peruana Cayetano Heredia
info
- 2 Universidad de Valencia.
ISSN: 2550-682X
Ano de publicación: 2022
Volume: 7
Número: 9
Páxinas: 1840-1864
Tipo: Artigo
Outras publicacións en: Polo del Conocimiento: Revista científico - profesional
Resumo
Virtual school education during the COVID-19 pandemic has rethought both pedagogical strategies and the psychological factors involved in learning, motivation being one of the most important. The Motivated Strategies for Learning Questionnaire (MSLQ) has been validated in multiple contexts and educational levels during the last three decades. However, its underlying theoretical structure remains under discussion. The purpose of this research is to determine the validity and reliability of the MSLQ for students in Cusco in distance education. The study has a quantitative, pre-experimental and psychometric approach. The content validity of the MSLQ was determined by expert judges (n = 7) showing high clarity, coherence and relevance (p < 0.01). Construct validity and internal consistency reliability were evaluated in a sample of schoolchildren from Cusco (n = 322). Through the Exploratory Factor Analysis (EFA) the items with cross loads and low communality were eliminated. The final structure was threedimensional with 23 items, explaining 96.55% of the variance. When performing the Confirmatory Factor Analysis (CFA), the convergent and discriminant validity of the instrument was determined, as well as high goodness-of-fit indices (χ2/gl = 1.963, RMSEA = 0.055, SRMR = 0.054, CFI = 0.934, TLI = 0.927) . High reliability was determined by internal consistency (α = 0.949, ω = 0.951) in the instrument. The results and utility in the school context of Cusco are discussed.
Referencias bibliográficas
- Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142. https://doi.org/10.1177/0013164485451012
- Alfaro Aucca, C. (2019). Motivación académica y estrategias de aprendizaje de los estudiantes de la escuela profesional de arquitectura de la universidad andina del Cusco, 2019 [Tesis de doctorado, Universidad Andina del Cusco]. Repositorio Universitario. https://bit.ly/3L6Fxpo
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
- Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Rand McNally & Company. https://bit.ly/3d0eGyJ
- Cardozo, A. (2008). Motivación, Aprendizajey rendimiento académico en Estudiantesdel primer año universitario. Laurus, 14(28), 209-237. http://www.redalyc.org/articulo.oa?i d=76111716011
- CAST. (2018). Universal design for learning guidelines, version 2.2 [Organizador Gráfico]. CAST. https://bit.ly/3cNVqEE
- Chakraborty, R., Haqyar, M., & Chechi, V. K. (2021). Validation of Motivated Strategies for Learning Questionnaire Among High School Students in Afghanistan. Pakistan Journal of Psychological Research, 36(4), 615-629. https://bit.ly/3RqVWYa
- Cheung, G. W., & Wang, C. (2017). Current Approaches for Assessing Convergent and Discriminant Validity with SEM: Issues and Solutions. Academy of Management Proceedings, 2017(1). https://doi.org/10.5465/ambpp.2017.12706abstract
- Chiu, T. K. F., Lin, T. J., & Lonka, K. (2021). Motivating Online Learning: The Challenges of COVID-19 and Beyond. The Asia-Pacific Education Researcher, 30, 187-190. https://doi.org/10.1007/s40299-021-00566-w
- Comisión Europea. (2021). E-learning through lockdown [Artículo Web]. Comisión Europea. https://bit.ly/3wTCPOd
- Conradty, C., & Bogner, F. X. (2022). Measuring Students’ School Motivation. Education Sciences, 12, 378. https://doi.org/10.3390/educsci12060378
- Credé, M., & Phillips, L. A. (2011). A meta-analytic review of the Motivated Strategies for Learning Questionnaire. Learning and Individual Differences, 21(4), 337–346. https://doi.org/10.1016/j.lindif.2011.03.002
- Curione, K. y Huertas, J. A. (2016). Revisión del MSLQ: veinticinco años de evaluación motivacional. Revista de Psicología, 12(24). https://bit.ly/3Iicfku
- D'agostino, R. B., Belanger, A. & D'agostino Jr., R. B.(1990) A Suggestion for Using Powerful and Informative Tests of Normality. The American Statistician, 44(4), 316-321. http://doi.org/10.1080/00031305.1990.10475751
- Deng, L., Yang, M., & Marcoulides K. M. (2018) Structural Equation Modeling With Many Variables: A Systematic Review of Issues and Developments. Frontiers in Psychology, 9(580). http://doi.org/10.3389/fpsyg.2018.00580
- Díaz-Noguera, M. D., Hervás-Gómez, C., De la Calle-Cabrera, A. M., & López-Meneses, E. (2022). Autonomy, Motivation, and Digital Pedagogy Are Key Factors in the Perceptions of Spanish Higher-Education Students toward Online Learning during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(2), 654. https://doi.org/10.3390/ijerph19020654
- Finn, B. (2015). Measuring Motivation in Low-Stakes Assessments. ETS Research Report Series, 2015(2), 1–17. http://doi.org/10.1002/ets2.12067
- Fong, C. J. (2022). Academic motivation in a pandemic context: a conceptual review of prominent theories and an integrative model. Educational Psychology. https://doi.org/10.1080/01443410.2022.2026891
- Gobierno Regional Cusco. (2022). Conectando la región: acceso gratuito a internet en zonas rurales para mejorar la educación [Nota de prensa]. Gobierno del Perú. https://bit.ly/3LcMu8B
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis, 8va edición. Cengage Learning.
- Hernández, R., & Mendoza, C. P. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Education. https://bit.ly/3Ry0WKs
- Hilpert, J. C., Stempien, J., van der Hoeven Kraft, K. J., & Husman, J. (2013). Evidence for the Latent Factor Structure of the MSLQ. SAGE Open, 3(4). https://doi.org/10.1177/2158244013510305
- Holland, D. F., Kraha, A., Zientek, L. R., Nimon, K., Fulmore, J. A., Johnson, U. Y., Ponce, H. F., Aguilar, M. G., & Henson, R. K. (2018). Reliability Generalization of the Motivated Strategies for Learning Questionnaire: A Meta-Analytic View of Reliability Estimates. SAGE Open, 8(3). https://doi.org/10.1177/2158244018802334
- Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6(1), 53-60. https://bit.ly/3BbN1CV
- Instituto Nacional de Estadística e Informática [INEI]. (2018). Perú: Perfil sociodemográfico. Informe Nacional. INEI. https://bit.ly/2N9nTHc
- Instituto Nacional de Estadística e Informática [INEI]. (2021a). Se incrementó población que utiliza Internet a diario [Nota de prensa]. INEI. https://bit.ly/3QNS8iu
- Instituto Nacional de Estadística e Informática [INEI]. (2021b). El 55,0% de los hogares del país accedieron a internet en el tercer trimestre del 2021 [Nota de prensa]. INEI. https://bit.ly/3eEOfis
- Instituto Nacional de Estadística e Informática [INEI]. Se incrementa asistencia de niñas y niños a clases virtuales de todos los niveles educativos [Nota de prensa virtual]. INEI. https://bit.ly/3cXFaRp
- Inzunza, B., Pérez, C., Márquez, C., Ortiz, L., Marcellini, S., & Duk, S. (2018). Estructura factorial y confiabilidad del Cuestionario de Motivación y Estrategias de Aprendizaje, MSLQ, en Estudiantesuniversitarios chilenos de primer año. Revista Iberoamericana de Diagnóstico y Evaluación –e Avaliação Psicológica, 47(2), 21-35. https://doi.org/10.21865/ridep47.2.02
- Jakešová, J. (2014). The validity and reliability study of the czech version of the motivated strategies for learning questionnaire (MSLQ). The New Educational Review, 35(1), 54-65. https://tner.polsl.pl/e35/a4.pdf
- Jakesova, J., & Hrbackova, K. (2014). The Czech adaptation of motivated strategies for learning questionnaire (MSLQ). Asian Social Science, 40, 90–116. https://doi.org/10.5539/ass.v10n12p72
- Lockee, B. B. (2021). Online education in the post-COVID era. Nature Electronics, 4, 5-6. https://doi.org/10.1038/s41928-020-00534-0
- López-Aguado, M., & Gutiérrez-Provecho, L. (2019). Cómo realizar e interpretar un análisis factorial exploratorio utilizando SPSS. Revista d'Innovació i Recerca en Educació, 12(2), 1-14. http://doi.org/10.1344/reire2019.12.227057
- Malá, I., Sladek, V., Bilkova, D. (2021). Power Comparisons of Normality Tests Based on L-moments and Classical Tests. Mathematics and Statistics, 9(6), 994-1003. http://doi.org/10.13189/ms.2021.090615
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. https://doi.org/10.1093/biomet/57.3.519
- McKeachie, W. J., Pintrich, P. R., Lin, Y. y Smith, D. A. F. (1986). Teaching and Learning in the College Classroom. A Review of the Research Literature. University of Michigan. https://bit.ly/3L4FmKf
- Ministerio de Educación del Perú [MINEDU]. (2016). Cusco: ¿Cómo vamos en educación?. ESCALE. https://bit.ly/3qW9XBH
- Moneta Pizarro, A. y Tofful, C. M. (2019). La motivación de los alumnos y sus dimensiones en las carreras de grado a distancia de la FCA-UNDEF [Artículo de ponencia]. 8º Seminario Internacional Rueda 2019, Argentina. https://bit.ly/3PhdDJ0
- National Center for Education Statistics. (2022). Impact of the coronavirus pandemic on the elementary and secondary education system. En The Condition of Education 2021. U.S. Department of Education, Institute of Education Sciences. https://bit.ly/3RAHywc
- OCDE. (2020). La educación en tiempos de la pandemia de COVID-19 [Informe virtual]. CEPAL. https://bit.ly/3Rs1vpb
- Pintrich, P. R., Smith, D. A. F., García, T. y McKeachie, W. J. (1991). A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ). University of Michigan. https://bit.ly/3Jia2qO
- Puicaño, A. L. (2022). El uso del WhatsApp y el desempeño docente a nivel primario en el distrito de Ocoña, 2022. Horizontes. Revista de Investigación en Ciencias de la Educación, 6(24). https://doi.org/10.33996/revistahorizontes.v6i24.402
- Quesada-Pallarès, C., Sánchez-Martí, A., Ciraso-Calí, A., & Pineda-Herrero, P. (2019). Online vs. Classroom Learning: Examining Motivational and Self-Regulated Learning Strategies Among Vocational Education and Training Students. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02795
- Rose, D. H., Gravel, J. W., & Gordon, D. T. (2013). Universal Design for Learning. En L. Florian (Eds.), The SAGE Handbook of Special Education, Volume One, 2nd edition (pp. 442-454). SAGE. https://bit.ly/3RhxwAn
- Ruiz, M. A., Pardo, A., & San Martín, R. (2010). Modelos de ecuaciones estructurales. Papeles del Psicólogo, 31(1), 34-45. https://bit.ly/3BpmovK
- Ryan, R. M. y Deci, E. L. (2000). Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-being. American Psychologist, 55(1), 68-78. http://doi.org/10.1037110003-066X.55.1.68
- Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research, 8(2), 23–74. https://bit.ly/3Dn7gAg
- Schumacher, R. E., & Lomax, R. G. (2015). A Beginner’s Guide to Structural Equation, 4ta edición. Routledge.
- Schunk, D. H., Meece, J. R., & Pintrich, P. R. (2014). Motivation in Education: Theory, Research and Applications. Pearson. https://bit.ly/3wVw6Dg
- Torres Valladares, M. (2002). Influencia de la motivación y estrategias de aprendizaje en el rendimiento académico de estudiantes universitarios [Investigación académica]. CONCYTEC. https://bit.ly/3Qx6K5K
- UNESCO. (2020, 16 de diciembre). From COVID-19 learning disruption to recovery: A snapshot of UNESCO’s work in education in 2020 [Artículo web]. UNESCO. https://bit.ly/3cNXpsA
- UNICEF. (2021). Reimaginar la educación en América Latina y el Caribe [Artículo web]. UNICEF. https://uni.cf/3Qg9Afo
- Vaculíkova, J. (2016). The Third Round of the Czech Validation of the Motivated Strategies for Learning Questionnaire (MSLQ). International Education Studies, 9(7), 35-46. http://dx.doi.org/10.5539/ies.v9n7p35
- VandenBos, G. R. (2015). APA dictionary of psychology, segunda edición. American Psychological Association. https://doi.org/10.1037/14646-000
- Vegas, E. (2020, 14 de Abril). School closures, government responses, and learning inequality around the world during COVID-19 [Reporte virtual]. Brookings. https://brook.gs/3QfyWKr
- Veliz M, Nieva J, Soto L, Robalino P, Musso M. (2021). Validación de un cuestionario de motivación y estrategias de aprendizaje (MSLQ) para la modalidad virtual durante la pandemia COVID-19 [Artículo de ponencia]. Reuniones AACC, XVIII Reunión Nacional y VII Encuentro Internacional de la AACC. https://bit.ly/3qhGWzZ
- Villarreal-Fernández, J. E., & Arroyave-Giraldo, D. I. (2022). Adaptación y Validez de la Escala de Motivación del Motivated Scale Learning Questionnaire (MSLQ) en Universitarios Colombianos. Electronic Journal of Research in Educational Psychology, 20(1), 119-150. https://doi.org/10.25115/ejrep.v20i56.4394
- Wigfield, A. y Eccles, J. S. (2000). Expectancy–Value Theory of Achievement Motivation. Contemporary Educational Psychology 25, 68–81. http://doi.org/10.1006/ceps.1999.1015
- Williams, M. K. (2017). John Dewey in the 21st Century. Journal of Inquiry & Action in Education, 9(1), 91-102. https://bit.ly/3KJuiTw
- Yábar Calderón, V. (2021). Correlación entre inteligencia emocional y motivación en estudiantes de docencia universitaria de posgrado de la universidad andina Cusco 2019 [Tesis de maestría, Universidad Andina del Cusco]. Repositorio Institucional. https://bit.ly/3qv0zET
- Yáñez, S., Jaramillo, M. C., & Correa, J. C. (1999). Una revisión de medidas multivariadas de asimetría y Kurtosis para pruebas de multinormalidad. Revista Colombiana de Estadística, 22(2), 5-16. https://bit.ly/3RWuKQI