Predicción del rendimiento académico en educación secundaria mediante el análisis de árboles de decisión
- Israel Villarrasa-Sapiña 1
- Xavier García-Massó 2
- Encarnación Liébana 3
- Gonzalo Monfort Torres 4
- 1 Universidad Internacional de La Rioja, Spain
- 2 Universitat de València, Spain
- 3 Universitat Católica de València, Spain
- 4 Florida Universitaria
ISSN: 1139-613X, 2174-5374
Año de publicación: 2024
Volumen: 27
Número: 1
Páginas: 253-279
Tipo: Artículo
Otras publicaciones en: Educación XX1: Revista de la Facultad de Educación
Resumen
El objetivo del presente estudio fue desarrollar un modelo de predicción del rendimiento académico (éxito o fracaso escolar) mediante la aplicación de un análisis de árbol de decisión. Se realizó un estudio transversal para diseñar un sistema de detección temprana del fracaso escolar. Participaron 219 adolescentes (de 14 a 16 años) y se recabó información de su estatus socioeconómico, percentil de índice de masa corporal (IMC), actividad física, tiempo de ocio frente a pantallas, niveles de disfrute, esperanza, ira, ansiedad, aburrimiento, compromiso conductual, compromiso emocional, compromiso cognitivo, rendimiento escolar autopercibido e intención de ir a la universidad, como variables de entrada en el análisis del árbol de decisión. Se encontraron 6 grupos de fracaso y 3 de éxito capaces de predecir el rendimiento académico. Se obtuvo una buena precisión en los conjuntos de datos de entrenamiento (80.11 %) y validación (81.40 %) del árbol de decisión. Es posible predecir el fracaso o el éxito académico mediante la evaluación del estado de peso, la actividad física, la ira y la esperanza durante la asistencia a la escuela, la intención de ir a la universidad y el rendimiento escolar autopercibido.
Referencias bibliográficas
- Alexander, K. L., Entwisle, D. R., & Horsey, C. S. (1997). From first grade forward: early foundations of high school dropout. Sociology of Education, 70(2), 87–107. https://doi.org/10.2307/2673158
- Alexander, K. L., Entwisle, D. R., & Kabbani, N. S. (2001). The dropout process in life course perspective: early risk factors at home and school. Teachers College Record, 103(5), 760–822. https://doi.org/10.1111/0161-4681.00134
- Alyahyan, E., & Düştegör, D. (2020). Predicting academic success in higher education: literature review and best practices. International Journal of Educational Technology in Higher Education, 17(1), 3. https://doi.org/10.1186/s41239-020-0177-7
- Alzina, R. B., & Escoda, N. P. (2012). Educación emocional: estrategias para su puesta en práctica. Avances en Supervisión Educativa, 16, 16.
- Ashraf, A., Anwer, S., & Khan, M. G. (2018). A Comparative study of predicting student’s performance by use of data mining techniques. American Scientific Research Journal for Engineering, Technology, and Sciences, 44(1), 1.
- Cairns, R. B., Cairns, B. D., & Neckerman, H. J. (1989). Early school dropout: configurations and determinants. Child Development, 60(6), 1437–1452. https://doi.org/10.2307/1130933
- Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learning: testing the linkages. Research in Higher Education, 47(1), 1–32. https://doi.org/10.1007/s11162-005-8150-9
- Casillas, A., Robbins, S., Allen, J., Kuo, Y.-L., Hanson, M. A., & Schmeiser, C. (2012). Predicting early academic failure in high school from prior academic achievement, psychosocial characteristics, and behavior. Journal of Educational Psychology, 104(2), 407–420. https://doi.org/10.1037/a0027180
- Coe, D. P., Peterson, T., Blair, C., Schutten, M. C., & Peddie, H. (2013). Physical fitness, academic achievement, and socioeconomic status in school-aged youth. The Journal of School Health, 83(7), 500–507. https://doi.org/10.1111/josh.12058
- Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: a motivational analysis of self-system processes. In M. R. Gunnar & L. A. Sroufe (Eds.) Self processes and development (pp. 43–77). Lawrence Erlbaum Associates, Inc.
- Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. En M. Csikszentmihalyi (Ed.), Flow and the foundations of positive psychology: the collected works of mihaly csikszentmihalyi (pp. 209–226). Springer Netherlands. https://doi.org/10.1007/978-94-017-9088-8_14
- Currie, C., Molcho, M., Boyce, W., Holstein, B., Torsheim, T., & Richter, M. (2008). Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Social Science & Medicine, 66(6), 1429–1436. https://doi.org/10.1016/j.socscimed.2007.11.024
- Davis, A., Solberg, V. S., Baca, C. de, & Gore, T. H. (2014). Use of social emotional learning skills to predict future academic success and progress toward graduation. Journal of Education for Students Placed at Risk, 19(3–4), 169–182. https://doi.org/10.1080/10824669.2014.972506
- Díaz, E. R., Fernández, A. R., & Revuelta, L. R. (2016). Validation of the Spanish version of the School Engagement Measure (SEM). The Spanish Journal of Psychology, 19, 85–89.
- Dixson, D. D. (2019). Hope into action: how clusters of hope relate to success-oriented behavior in school. Psychology in the Schools, 56(9), 1493–1511. https://doi.org/10.1002/pits.22299
- D’Mello, S., Jackson, G., Craig, S., Morgan, B., Chip-Man, P., White, H., Person, N., Kort, B., Kaliouby, R., Picard, R., & Graesser, A. (2008). AutoTutor detects and responds to learners affective and cognitive states. Workshop on emotional and cognitive issues at the International Conference Intelligent Tutoring Systems. Montreal, Canada.
- Doğan, U. (2014). Validity and reliability of Student Engagement Scale. Bartın University Journal of Faculty of Education, 3(2), 390-403. https://doi.org/10.14686/BUEFAD.201428190
- Dogan, U. (2015). Student engagement, academic self-efficacy, and academic motivation as predictors of academic performance. The Anthropologist, 20(3), 553–561. https://doi.org/10.1080/09720073.2015.11891759
- Eisenberg, N., Damon, W., & Lerner, R. M. (2006). Handbook of child psychology: social, emotional, and personality development (6th ed). John Wiley & Sons, Inc.
- Enguita, M. F., Martínez, L. M., & Gómez, J. R. (2010). Fracaso y abandono escolar en España. Fundación la Caixa.
- Feldman, D. B., & Kubota, M. (2015). Hope, self-efficacy, optimism, and academic achievement: distinguishing constructs and levels of specificity in predicting college grade-point average. Learning and Individual Differences, 37, 210–216. https://doi.org/10.1016/j.lindif.2014.11.022
- Fernandez-Lasarte, O., Goñi, E., Camino, I., & Zubeldia, M. (2019). Ajuste escolar y autoconcepto académico en la Educación Secundaria. Revista de Investigación Educativa, 37(1), 1. https://doi.org/10.6018/rie.37.1.308651
- Festinger, L. (1962). A theory of Cognitive Dissonance. Stanford University Press.
- Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59(2), 117–142. https://doi.org/10.3102/00346543059002117
- Finn, K. E., Faith, M. S., & Seo, Y. S. (2018). School engagement in relation to body mass index and school achievement in a high-school age sample. Journal of Obesity, 2018, 3729318. https://doi.org/10.1155/2018/3729318
- Fredricks, J. A., & McColskey, W. (2012). The measurement of student engagement: a comparative analysis of various methods and student self-report instruments. En S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 763–782). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_37
- García-Escalera, J., Valiente, R. M., Sandín, B., Ehrenreich-May, J., & Chorot, P. (2020). Los efectos de un programa de prevención de la ansiedad y la depresión para adolescentes en variables educativas y de bienestar. Revista de Psicodidáctica, 25(2), 143–149. https://doi.org/10.1016/j.psicod.2020.05.001
- Godoy, J. A., Abrahão, R. C., & Halpern, R. (2013). Autopercepção de dificuldades escolares em alunos do ensino fundamental e médio em município do Rio Grande do Sul. Aletheia, 41, 121–133.
- Graesser, A. C., & Olde, B. A. (2003). How does one know whether a person understands a device? The quality of the questions the person asks when the device breaks down. Journal of Educational Psychology, 95(3), 524–536. https://doi.org/10.1037/0022-0663.95.3.524
- Hardy, L. L., Booth, M. L., & Okely, A. D. (2007). The reliability of the Adolescent Sedentary Activity Questionnaire (ASAQ). Preventive Medicine, 45(1), 71–74. https://doi.org/10.1016/j.ypmed.2007.03.014
- Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967–1974. https://doi.org/10.1249/01.mss.0000176680.79702.ce
- Kowalski, K. C., Crocker, P. R. E., & Kowalski, N. P. (1997). Convergent validity of the Physical Activity Questionnaire for Adolescents. Pediatric Exercise Science, 9(4), 342–352. https://doi.org/10.1123/pes.9.4.342
- Kuczmarski, R., Ogden, C., Grummer-Strawn, L., Flegal, K., Shumei, G., Wei, R., Mei, Z., Curtin, L., Roche, A., & Johnson, C. (2000). CDC growth charts: United States. National Center for Health Statistics, 314, 28.
- Lane, A. M., Whyte, G. P., Terry, P. C., & Nevill, A. M. (2005). Mood, self-set goals and examination performance: the moderating effect of depressed mood. Personality and Individual Differences, 39(1), 143–153. https://doi.org/10.1016/j.paid.2004.12.015
- Marques, A., Corrales, F. R. G., Martins, J., Catunda, R., & Sarmento, H. (2017). Association between physical education, school-based physical activity, and academic performance: a systematic review. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 31, 316–320.
- Martínez García, J. S. (2011). Género y origen social: diferencias grandes en fracaso escolar administrativo y bajas en rendimiento educativo. Revista de Sociología de la Educación-RASE, 4(3), 270–282.
- Martínez-Gómez, D., Martínez-de-Haro, V., Pozo, T., Welk, G. J., Villagra, A., Calle, M. E., Marcos, A., & Veiga, O. L. (2009). Fiabilidad y validez del cuestionario de actividad física PAQ-A en adolescentes españoles. Revista Española de Salud Pública, 83(3), 427–439.
- Morales, J., González, L.-M., Guerra, M., Virgili, C., & Unnithan, V. (2011). Physical activity, perceptual-motor performance, and academic learning in 9-to-16-years-old school children. International Journal of Sport Psychology, 42(4), 401–415.
- Morales, J., Pellicer-Chenoll, M., García-Masso, X., Gomis, M., & González, L.-M. (2011). Relation between physical activity and academic performance in 3rd-year secondary education students. Perceptual and Motor Skills, 113(2), 539–546.
- Moreira, B. B. G., Martins-Reis, V. de O., & Santos, J. N. (2016). Autopercepção das dificuldades de aprendizagem de estudantes do ensino fundamental. Audiology — Communication Research, 21. https://doi.org/10.1590/2317-6431-2015-1632
- Parker, J. D. A., Summerfeldt, L. J., Hogan, M. J., & Majeski, S. A. (2004). Emotional intelligence and academic success: examining the transition from high school to university. Personality and Individual Differences, 36(1), 163–172. https://doi.org/10.1016/S0191-8869(03)00076-X
- Parr, A. K., & Bonitz, V. S. (2015). Role of family background, student behaviors, and school-related beliefs in predicting high school dropout. The Journal of Educational Research, 108(6), 504–514. https://doi.org/10.1080/00220671.2014.917256
- Peiró-Velert, C., Valencia-Peris, A., González, L. M., García-Massó, X., Serra-Añó, P., & Devís-Devís, J. (2014). Screen media usage, sleep time and academic performance in adolescents: clustering a self-organizing maps analysis. Plos One, 9(6), e99478. https://doi.org/10.1371/journal.pone.0099478
- Pekrun, R. (2006). The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9
- Pekrun, R., Goetz, T., Daniels, L. M., Stupnisky, R. H., & Perry, R. P. (2010). Boredom in achievement settings: exploring control–value antecedents and performance outcomes of a neglected emotion. Journal of Educational Psychology, 102(3), 531–549. https://doi.org/10.1037/a0019243
- Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: the Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36–48. https://doi.org/10.1016/j.cedpsych.2010.10.002
- Pekrun, R., Goetz, T., Titz, W., & Perry, R. (2002). Academic emotions in students’ self-regulated learning and achievement: a program of qualitative and quantitative research. Educational Psychologist, 37, 91–105. https://doi.org/10.1207/S15326985EP3702_4
- Pellicer-Chenoll, M., Garcia-Massó, X., Morales, J., Serra-Añó, P., Solana-Tramunt, M., González, L.-M., & Toca-Herrera, J.-L. (2015). Physical activity, physical fitness and academic achievement in adolescents: a self-organizing maps approach. Health Education Research, 30(3), 436–448. https://doi.org/10.1093/her/cyv016
- Peterson, J. L., Puhl, R. M., & Luedicke, J. (2012). An experimental assessment of physical educators’ expectations and attitudes: the importance of student weight and gender. Journal of School Health, 82(9), 432–440. https://doi.org/10.1111/j.1746-1561.2012.00719.x
- Quadri, M. M. N., & Kalyankar, D. N. V. (2010). Drop out feature of student data for academic performance using decision tree techniques. Global Journal of Computer Science and Technology, 2(10). https://globaljournals.org/GJCST_Volume10/gjcst_vol10_issue2_ver1_paper7.pdf
- Rasberry, C. N., Lee, S. M., Robin, L., Laris, B. A., Russell, L. A., Coyle, K. K., & Nihiser, A. J. (2011). The association between school-based physical activity, including physical education, and academic performance: a systematic review of the literature. Preventive Medicine, 52, S10–S20. https://doi.org/10.1016/j.ypmed.2011.01.027
- Respondek, L., Seufert, T., Stupnisky, R., & Nett, U. E. (2017). Perceived academic control and academic emotions predict undergraduate university student success: examining effects on dropout intention and achievement. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00243
- Rokach, L., & Maimon, O. (2014). Data mining with decision trees: theory and applications (2ª ed.). World Scientific Publishing Co., Inc.
- Rosas, J. S. (2015). The Achievement Emotions Questionnaire-Argentine (AEQ-AR): internal and external validity, reliability, gender differences and norm-referenced interpretation of test scores. Revista Evaluar, 15(1), 1. https://doi.org/10.35670/1667-4545.v15.n1.14908
- Rubia, J. C. M. de la, Sosa, J. C. S., & González, M. E. V. (2010). Desarrollo de una escala multidimensional breve de ajuste escolar. Revista Electrónica de Metodología Aplicada, 15(1),1. https://doi.org/10.17811/rema.15.1.2010.1-11
- Sallis, J. F., McKenzie, T. L., Kolody, B., Lewis, M., Marshall, S., & Rosengard, P. (1999). Effects of health-related physical education on academic achievement: Project SPARK. Research Quarterly for Exercise and Sport, 70(2), 127–134. https://doi.org/10.1080/02701367.1999.10608030
- Shaw, S. R., Gomes, P., Polotskaia, A., & Jankowska, A. M. (2015). The relationship between student health and academic performance: implications for school psychologists. School Psychology International, 36(2), 115–134. https://doi.org/10.1177/0143034314565425
- Sherry, B., Jefferds, M. E., & Grummer-Strawn, L. M. (2007). Accuracy of adolescent self-report of height and weight in assessing overweight status: a literature review. Archives of Pediatrics & Adolescent Medicine, 161(12), 1154–1161. https://doi.org/10.1001/archpedi.161.12.1154
- Sigfúsdóttir, I. D., Kristjánsson, A. L., & Allegrante, J. P. (2007). Health behaviour and academic achievement in Icelandic school children. Health Education Research, 22(1), 70–80. https://doi.org/10.1093/her/cyl044
- Singh, A. S., Saliasi, E., Berg, V. van den, Uijtdewilligen, L., Groot, R. H. M. de, Jolles, J., Andersen, L. B., Bailey, R., Chang, Y.-K., Diamond, A., Ericsson, I., Etnier, J. L., Fedewa, A. L., Hillman, C. H., McMorris, T., Pesce, C., Pühse, U., Tomporowski, P. D., & Chinapaw, M. J. M. (2019). Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. British Journal of Sports Medicine, 53(10), 640–647. https://doi.org/10.1136/bjsports-2017-098136
- Singh, A., Uijtdewilligen, L., Twisk, J. W. R., van Mechelen, W., & Chinapaw, M. J. M. (2012). Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. Archives of Pediatrics & Adolescent Medicine, 166(1), 49–55. https://doi.org/10.1001/archpediatrics.2011.716
- Skinner, E. A., Wellborn, J. G., & Connell, J. P. (1990). What it takes to do well in school and whether I’ve got it: a process model of perceived control and children’s engagement and achievement in school. Journal of Educational Psychology, 82(1), 22–32. https://doi.org/10.1037/0022-0663.82.1.22
- Solberg, V. S., Gusavac, N., Hamann, T., Felch, J., Johnson, J., Lamborn, S., & Torres, J. (1998). The Adaptive Success Identity Plan (ASIP): a career intervention for college students. The Career Development Quarterly, 47(1), 48–95. https://doi.org/10.1002/j.2161-0045.1998.tb00728.x
- Sullivan, R. A., Kuzel, A. H., Vaandering, M. E., & Chen, W. (2017). The association of physical activity and academic behavior: a systematic review. Journal of School Health, 87(5), 388–398. https://doi.org/10.1111/josh.12502
- Titz, W. (2001). Emotionen von studierenden in lernsituationen: explorative analysen und entwicklung von selbstberichtskalen — anhang.
- Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20(2), 111–131. https://doi.org/10.1007/s10648-007-9057-0
- Trujillo-Torres, J.-M., Hossein-Mohand, H., Gómez-García, M., Hossein-Mohand, H., & Hinojo-Lucena, F.-J. (2020). Estimating the academic performance of secondary education mathematics students: a gain lift predictive model. Mathematics, 8(12), 12. https://doi.org/10.3390/math8122101
- Vairachilai S, V. (2020). Student’s academic performance prediction using machine learning approach. International Journal of Advanced Science and Technology, 29, 9s.
- Van Dusen, D. P., Kelder, S. H., Kohl, H. W., Ranjit, N., & Perry, C. L. (2011). Associations of physical fitness and academic performance among schoolchildren. The Journal of School Health, 81(12), 733–740. https://doi.org/10.1111/j.1746-1561.2011.00652.x
- van Praag, H. (2009). Exercise and the brain: something to chew on. Trends in Neurosciences, 32(5), 283–290. https://doi.org/10.1016/j.tins.2008.12.007
- Veitch, W. R. (11-14 de abril de 2004). Identifying characteristics of high school dropouts: data mining with a decision tree model [Ponencia de Congreso]. Annual Meeting of the American Educational Research Association, San Diego.
- Weiner, B. (1982). An attribution theory of motivation and emotion. Series in Clinical & Community Psychology: Achievement, Stress, & Anxiety, 223–245.
- Wittberg, R. A., Northrup, K. L., & Cottrel, L. (2009). Children’s physical fitness and academic performance. American Journal of Health Education, 40(1), 30–36.
- York, T. T., Gibson, C., & Rankin, S. (2015). Defining and measuring academic success. Practical Assessment, Research & Evaluation, 20(5).
- Yu, L. C., Lee, C. W., Pan, H. I., Chou, C. Y., Chao, P. Y., Chen, Z. H., Tseng, S. F., Chan, C. L., & Lai, K. R. (2018). Improving early prediction of academic failure using sentiment analysis on self-evaluated comments. Journal of Computer Assisted Learning, 34(4), 358–365. https://doi.org/10.1111/jcal.12247
- Zhang, X., Xue, R., Liu, B., Lu, W., & Zhang, Y. (28-30 de julio de 2018). Grade prediction of student academic performance with multiple classification models. [Ponencia de Congreso]. 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), China. https://doi.org/10.1109/FSKD.2018.8687286