Variational quantum eigensolver for causal loop Feynman diagrams and directed acyclic graphs

  1. Clemente, Giuseppe 3
  2. Crippa, Arianna 3
  3. Jansen, Karl 3
  4. Ramírez-Uribe, Selomit 456
  5. Rentería-Olivo, Andrés E. 4
  6. Rodrigo, Germán 4
  7. Sborlini, German F. R. 12
  8. Vale Silva, Luiz 4
  1. 1 Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, 37008 Salamanca, Spain
  2. 2 Escuela de Ciencias, Ingeniería y Diseño, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
  3. 3 Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
  4. 4 Instituto de Física Corpuscular, Universitat de València—Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna, Valencia, Spain
  5. 5 Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, CP 80000 Culiacán, Mexico
  6. 6 Facultad de Ciencias de la Tierra y el Espacio, Universidad Autónoma de Sinaloa, Ciudad Universitaria, CP 80000 Culiacán, Mexico
Revista:
Physical Review D

ISSN: 2470-0010 2470-0029

Año de publicación: 2023

Volumen: 108

Número: 9

Tipo: Artículo

DOI: 10.1103/PHYSREVD.108.096035 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Physical Review D

Resumen

We present a variational quantum eigensolver (VQE) algorithm for the efficient bootstrapping of the causal representation of multiloop Feynman diagrams in the loop-tree duality or, equivalently, the selection of acyclic configurations in directed graphs. A loop Hamiltonian based on the adjacency matrix describing a multiloop topology, and whose different energy levels correspond to the number of cycles, is minimized by VQE to identify the causal or acyclic configurations. The algorithm has been adapted to select multiple degenerated minima and thus achieves higher detection rates. A performance comparison with a Grover’s based algorithm is discussed in detail. The VQE approach requires, in general, fewer qubits and shorter circuits for its implementation, albeit with lesser success rates.

Información de financiación

Referencias bibliográficas

  • 10.1016/S0010-4655(00)00156-9
  • 10.1016/j.nuclphysbps.2006.09.033
  • 10.1016/j.cpc.2007.07.001
  • 10.1007/JHEP04(2010)074
  • 10.22323/1.260.0034
  • 10.1007/JHEP11(2011)014
  • 10.1007/JHEP04(2012)055
  • 10.1007/JHEP09(2012)042
  • 10.1016/j.physletb.2012.09.053
  • 10.1103/PhysRevD.87.085026
  • 10.1103/PhysRevD.94.116015
  • 10.1007/JHEP08(2016)164
  • 10.1016/j.nuclphysb.2006.11.012
  • 10.1016/0550-3213(81)90199-1
  • 10.1142/S0217751X00002159
  • 10.21468/SciPostPhys.12.4.129
  • 10.1016/S0550-3213(00)00429-6
  • 10.1016/j.cpc.2008.11.006
  • 10.1016/j.cpc.2011.03.026
  • 10.1016/j.cpc.2017.09.015
  • 10.1016/j.physrep.2021.03.006
  • 10.1140/epjc/s10052-017-5023-2
  • 10.1140/epjc/s10052-021-08996-y
  • 10.1103/PhysRevLett.126.112004
  • 10.1007/JHEP10(2021)206
  • 10.1088/1126-6708/2008/09/065
  • 10.1016/j.nuclphysbps.2008.09.114
  • 10.1007/JHEP10(2010)073
  • 10.1007/JHEP03(2013)025
  • 10.1007/JHEP11(2014)014
  • 10.1140/epjc/s10052-017-4833-6
  • 10.1007/JHEP12(2017)122
  • 10.1007/JHEP05(2017)148
  • 10.5506/APhysPolB.50.1983
  • 10.1140/epjc/s10052-021-09094-9
  • 10.1007/JHEP02(2016)044
  • 10.1007/JHEP08(2016)160
  • 10.1007/JHEP10(2016)162
  • 10.1007/JHEP02(2019)143
  • 10.1103/PhysRevD.105.016012
  • 10.1007/JHEP06(2021)089
  • 10.1007/JHEP12(2019)163
  • 10.1103/PhysRevLett.124.211602
  • 10.1007/JHEP01(2021)069
  • 10.1007/JHEP04(2021)129
  • 10.1007/JHEP02(2021)112
  • 10.1007/JHEP04(2021)183
  • 10.1103/PhysRevD.104.036014
  • 10.1140/epjc/s10052-021-09235-0
  • 10.1103/PhysRevLett.123.151602
  • 10.1007/JHEP04(2020)096
  • 10.1103/PhysRevLett.122.111603
  • 10.1103/PhysRevLett.123.059902
  • 10.1103/PhysRevD.101.116014
  • 10.1103/PhysRevD.106.076006
  • 10.1063/1.1703676
  • G. F. R. Sborlini, (2021), Proceedings of the 15th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology and LoopFest XIX: Workshop on Radiative Corrections for the LHC and Future Colliders
  • 10.1007/JHEP05(2022)100
  • 10.1103/PhysRevLett.79.325
  • 10.1137/S0097539795293172
  • 10.1103/PhysRevE.58.5355
  • 10.1126/science.1217069
  • 10.1140/epjd/e2020-100571-8
  • 10.1088/0034-4885/79/1/014401
  • 10.1103/PhysRevA.73.022328
  • 10.1103/PhysRevLett.126.220501
  • 10.1103/PhysRevD.104.034504
  • 10.1103/PhysRevD.101.094015
  • 10.1016/j.physletb.2023.138000
  • 10.1103/PhysRevD.106.036021
  • 10.1103/PhysRevD.106.094016
  • 10.1103/PhysRevD.106.074013
  • 10.1140/epjc/s10052-021-09674-9
  • 10.1103/PhysRevD.103.034027
  • 10.1103/PhysRevD.106.056002
  • 10.1007/JHEP11(2022)035
  • 10.1103/PhysRevD.105.095004
  • 10.1016/j.physletb.2022.137228
  • 10.1038/ncomms5213
  • 10.1088/1367-2630/18/2/023023
  • 10.1016/j.physrep.2022.08.003
  • 10.1137/0607036
  • 10.1016/j.entcs.2019.08.057
  • F. S. Oliveira, Proceedings of Lagos 2019, the Tenth Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2019)
  • 10.1109/TC.1986.1676819
  • J. Aguilera-Verdugo, (2020), SnowMass 2021
  • 10.3390/sym13061029
  • 10.21468/SciPostPhys.12.6.192
  • M. J. D. Powell, (1994), A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, 10.1007/978-94-015-8330-5_4
  • J. C. Spall, (1998), Johns Hopkins APL Tech. Dig., 19, pp. 482
  • 10.1103/PhysRevResearch.2.043158
  • 10.1038/s41467-018-07090-4
  • 10.1103/PRXQuantum.3.020365
  • 10.1103/PhysRevLett.80.4329
  • 10.22331/q-2020-04-20-256
  • T. Stollenwerk, (2019), Quantum Technology and Optimization Problems: First International Workshop, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1
  • 10.1103/PhysRevLett.125.260505
  • 10.1088/1367-2630/acb22c