The impact of velocity-based movement on electromyography activity in standard lower-limb strength exercises

  1. Ana Ferri-Caruana 1
  2. Elena Muñoz-Gómez 1
  3. Sara Mollà-Casanova 1
  4. Pablo Camarón-Mallén 1
  5. Pilar Serra-Añó 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
Scientific Journal of Sport and Performance

ISSN: 2794-0586

Año de publicación: 2023

Volumen: 2

Número: 3

Páginas: 314-325

Tipo: Artículo

DOI: 10.55860/MXQO3997 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientific Journal of Sport and Performance

Resumen

Previous research has shown that the velocity of movement can influence muscle activation. However, no studies have investigated the impact of movement velocity under the same load conditions on electromyography (EMG) activity in knee and hip extensors. This study aims to compare the mean muscle activation of gluteus maximus [GM], biceps femoris [BF], semitendinosus [ST] and rectus femoris [RF] in three hip extension exercises (i.e., squat [SQ], hip thrust [HT] and Bulgarian squat [BS]) with two different movement velocities (i.e., maximum velocity [MV] and controlled velocity [CV]). Fifteen physically active students participated. The mean EMG activity of all targeted muscles was measured. Maximum Voluntary Isometric Contraction was used to normalize EMG muscle activation. All muscles were activated to a greater extent in BS at MV than in the same exercise performed at CV. However, during the SQ exercise, EMG differences between velocities were only obtained for BF and GM, and in HT, only for GM (p < .05). In conclusion, higher velocity involves higher activation of the lower-limb muscles, depending on the physical test, and this can be used to better plan the functional recovery of injury, taking it into consideration for intensity progression and avoiding the risks of overly strenuous exercises.

Información de financiación

Financiadores

Referencias bibliográficas

  • Alcaraz-Ibañez, M., & Rodríguez-Pérez, M. (2018). Effects of resistance training on performance in previously trained endurance runners: A systematic review. Journal of sports sciences, 36(6), 613-629. https://doi.org/10.1080/02640414.2017.1326618 DOI: https://doi.org/10.1080/02640414.2017.1326618
  • Appleby, B. B., Cormack, S. J., & Newton, R. U. (2019). Specificity and transfer of lower-body strength: Influence of bilateral or unilateral lower-body resistance training. The Journal of Strength & Conditioning Research, 33(2), 318-326. https://doi.org/10.1519/JSC.0000000000002923 DOI: https://doi.org/10.1519/JSC.0000000000002923
  • Azizi, E., Brainerd, E. L., & Roberts, T. J. (2008). Variable gearing in pennate muscles. Proceedings of the National Academy of Sciences, 105(5), 1745-1750. https://doi.org/10.1073/pnas.0709212105 DOI: https://doi.org/10.1073/pnas.0709212105
  • Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
  • Bourne, M. N., Timmins, R. G., Opar, D. A., Pizzari, T., Ruddy, J. D., Sims, C., Williams, M. D., & Shield, A. J. (2018). An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Medicine, 48(2), 251-267. https://doi.org/10.1007/s40279-017-0796-x DOI: https://doi.org/10.1007/s40279-017-0796-x
  • Brazil, A., Needham, L., Palmer, J. L., & Bezodis, I. N. (2021). A comprehensive biomechanical analysis of the barbell hip thrust. PloS one, 16(3), e0249307. https://doi.org/10.1371/journal.pone.0249307 DOI: https://doi.org/10.1371/journal.pone.0249307
  • Buckthorpe, M., & Roi, G. S. (2017). The time has come to incorporate a greater focus on rate of force development training in the sports injury rehabilitation process. Muscles, ligaments and tendons journal, 7(3), 435. https://doi.org/10.11138/mltj/2017.7.3.435 DOI: https://doi.org/10.11138/mltj/2017.7.3.435
  • Calatayud, J., Casaña, J., Martín, F., Jakobsen, M. D., Andersen, L. L., & Colado, J. C. (2019). Electromyographic effect of using different attentional foci during the front plank exercise. American journal of physical medicine & rehabilitation, 98(1), 26-29. https://doi.org/10.1097/PHM.0000000000001008 DOI: https://doi.org/10.1097/PHM.0000000000001008
  • Calatayud, J., Vinstrup, J., Jakobsen, M. D., Sundstrup, E., Colado, J. C., & Andersen, L. L. (2018). Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds. Journal of sports sciences, 36(10), 1162-1166. https://doi.org/10.1080/02640414.2017.1363403 DOI: https://doi.org/10.1080/02640414.2017.1363403
  • Carpentier, A., Duchateau, J., & Hainaut, K. (1996). Velocity-dependent muscle strategy during plantarflexion in humans. Journal of Electromyography and Kinesiology, 6(4), 225-233. https://doi.org/10.1016/S1050-6411(96)00003-X DOI: https://doi.org/10.1016/S1050-6411(96)00003-X
  • Castillo, F., Valverde, T., Morales, A., Pérez-Guerra, A., De León, F., & García-Manso, J. M. (2012). Maximum power, optimal load and optimal power spectrum for power training in upper-body (bench press): A review. Revista Andaluza de Medicina del Deporte, 5(1), 18-27. https://doi.org/10.1016/S1888-7546(12)70005-9 DOI: https://doi.org/10.1016/S1888-7546(12)70005-9
  • Clark, D. R., Lambert, M. I., & Hunter, A. M. (2012). Muscle activation in the loaded free barbell squat: A brief review. The Journal of Strength & Conditioning Research, 26(4), 1169-1178. https://doi.org/10.1519/JSC.0b013e31822d533d DOI: https://doi.org/10.1519/JSC.0b013e31822d533d
  • Cochrane, D. J., & Barnes, M. J. (2015). Muscle activation and onset times of hip extensors during various loads of a closed kinetic chain exercise. Research in Sports Medicine, 23(2), 179-189. https://doi.org/10.1080/15438627.2015.1005299 DOI: https://doi.org/10.1080/15438627.2015.1005299
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., & Cronin, J. (2015). A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyographic activity in the back squat and barbell hip thrust exercises. Journal of applied biomechanics, 31(6), 452-458. https://doi.org/10.1123/jab.2014-0301 DOI: https://doi.org/10.1123/jab.2014-0301
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., McMaster, D. T., Reyneke, J. H., & Cronin, J. B. (2017). Effects of a six-week hip thrust vs. front squat resistance training program on performance in adolescent males: A randomized controlled trial. Journal of strength and conditioning research, 31(4), 999-1008. https://doi.org/10.1519/JSC.0000000000001510 DOI: https://doi.org/10.1519/JSC.0000000000001510
  • Cormie, P., McBride, J. M., & McCaulley, G. O. (2009). Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. The Journal of Strength & Conditioning Research, 23(1), 177-186. https://doi.org/10.1519/JSC.0b013e3181889324 DOI: https://doi.org/10.1519/JSC.0b013e3181889324
  • Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc, 42(8), 1582-1598. https://doi.org/10.1249/MSS.0b013e3181d2013a DOI: https://doi.org/10.1249/MSS.0b013e3181d2013a
  • Cronin, N. J., Peltonen, J., Ishikawa, M., Komi, P. V., Avela, J., Sinkjaer, T., & Voigt, M. (2008). Effects of contraction intensity on muscle fascicle and stretch reflex behavior in the human triceps surae. Journal of Applied Physiology, 105(1), 226-232. https://doi.org/10.1152/japplphysiol.90432.2008 DOI: https://doi.org/10.1152/japplphysiol.90432.2008
  • De Luca, C. J., Gilmore, L. D., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of biomechanics, 43(8), 1573-1579. https://doi.org/10.1016/j.jbiomech.2010.01.027 DOI: https://doi.org/10.1016/j.jbiomech.2010.01.027
  • Enoka, R. M. (2008). Neuromechanics of human movement. Human kinetics.
  • Farina, D., Merletti, R., & Enoka, R. M. (2004). The extraction of neural strategies from the surface EMG. Journal of applied physiology, 96(4), 1486-1495. https://doi.org/10.1152/japplphysiol.01070.2003 DOI: https://doi.org/10.1152/japplphysiol.01070.2003
  • Felici, F. (2006). Neuromuscular responses to exercise investigated through surface EMG. Journal of Electromyography and Kinesiology, 16(6), 578-585. https://doi.org/10.1016/j.jelekin.2006.08.002 DOI: https://doi.org/10.1016/j.jelekin.2006.08.002
  • Ferri Caruana, A. M., Prades Insa, B., & Serra Añó, P. (2020). Effects of pelvic and core strength training on biomechanical risk factors for anterior cruciate ligament injuries. Journal of Sports Medicine and Physical Fitness, 2020, vol. 60, p. 1128-1138. https://doi.org/10.23736/S0022-4707.20.10552-8 DOI: https://doi.org/10.23736/S0022-4707.20.10552-8
  • García, C. L. C., Rueda, J., Luginick, B. S., & Navarro, E. (2020). Differences in the electromyographic activity of lower-body muscles in hip thrust variations. The Journal of Strength & Conditioning Research, 34(9), 2449-2455. https://doi.org/10.1519/JSC.0000000000002859 DOI: https://doi.org/10.1519/JSC.0000000000002859
  • Gentil, P., Bottaro, M., Noll, M., Werner, S., Vasconcelos, J. C., Seffrin, A., & Campos, M. H. (2017). Muscle activation during resistance training with no external load-effects of training status, movement velocity, dominance, and visual feedback. Physiology & behavior, 179, 148-152. https://doi.org/10.1016/j.physbeh.2017.06.004 DOI: https://doi.org/10.1016/j.physbeh.2017.06.004
  • Hassani, A., Patikas, D., Bassa, E., Hatzikotoulas, K., Kellis, E., & Kotzamanidis, C. (2006). Agonist and antagonist muscle activation during maximal and submaximal isokinetic fatigue tests of the knee extensors. Journal of electromyography and kinesiology, 16(6), 661-668. https://doi.org/10.1016/j.jelekin.2005.11.006 DOI: https://doi.org/10.1016/j.jelekin.2005.11.006
  • Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., & Hägg, G. (1999). European recommendations for surface electromyography. Roessingh research and development, 8(2), 13-54.
  • Hug, F., Turpin, N. A., Guével, A., & Dorel, S. (2010). Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? Journal of applied physiology, 108(6), 1727-1736. https://doi.org/10.1152/japplphysiol.01305.2009 DOI: https://doi.org/10.1152/japplphysiol.01305.2009
  • Hunter, J. P., Marshall, R. N., & McNair, P. J. (2005). Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. Journal of applied biomechanics, 21(1), 31-43. https://doi.org/10.1123/jab.21.1.31 DOI: https://doi.org/10.1123/jab.21.1.31
  • Jakobsen, M. D., Sundstrup, E., Andersen, C. H., Aagaard, P., & Andersen, L. L. (2013). Muscle activity during leg strengthening exercise using free weights and elastic resistance: Effects of ballistic vs controlled contractions. Human movement science, 32(1), 65-78. https://doi.org/10.1016/j.humov.2012.07.002 DOI: https://doi.org/10.1016/j.humov.2012.07.002
  • Jones, D. A., Round, J. M., & De Haan, A. (2004). Skeletal Muscle from Molecules to Movement: A Textbook of Muscle Physiotherapy for Sport. Exercise and Physiotherapy: Edinburgh.
  • Keogh, J. W., Wilson, G. J., & Weatherby, R. E. (1999). A cross-sectional comparison of different resistance training techniques in the bench press. The Journal of Strength & Conditioning Research, 13(3), 247-258. https://doi.org/10.1519/00124278-199908000-00012 DOI: https://doi.org/10.1519/00124278-199908000-00012
  • Keogh, J. W., & Winwood, P. W. (2017). The epidemiology of injuries across the weight-training sports. Sports medicine, 47(3), 479-501. https://doi.org/10.1007/s40279-016-0575-0 DOI: https://doi.org/10.1007/s40279-016-0575-0
  • Khuu, A., Foch, E., & Lewis, C. L. (2016). Not all single leg squats are equal: A biomechanical comparison of three variations. International journal of sports physical therapy, 11(2), 201.
  • Kilgallon, J., Cushion, E., Joffe, S., & Tallent, J. (2022). Reliability and validity of velocity measures and regression methods to predict maximal strength ability in the back-squat using a novel linear position transducer. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 17543371221093188. https://doi.org/10.1177/17543371221093189 DOI: https://doi.org/10.1177/17543371221093189
  • Kojić, F., Ranisavljev, I., Ćosić, D., Popović, D., Stojiljković, S., & Ilić, V. (2021). Effects of resistance training on hypertrophy, strength and tensiomyography parameters of elbow flexors: Role of eccentric phase duration. Biology of Sport, 38(4), 587-594. https://doi.org/10.5114/biolsport.2021.99323 DOI: https://doi.org/10.5114/biolsport.2021.99323
  • Krzysztofik, M., Wilk, M., Wojdala, G., & Golaś, A. (2019). Maximizing muscle hypertrophy: A systematic review of advanced resistance training techniques and methods. International journal of environmental research and public health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897 DOI: https://doi.org/10.3390/ijerph16244897
  • Kuriki, H. U., Mello, E. M., De Azevedo, F. M., Takahashi, L. S. O., Alves, N., & de Faria Negrão Filho, R. (2012). The relationship between electromyography and muscle force. Citeseer.
  • McCaw, S. T., & Melrose, D. R. (1999). Stance width and bar load effects on leg muscle activity during the parallel squat. Medicine and science in sports and exercise, 31, 428-436. https://doi.org/10.1097/00005768-199903000-00012 DOI: https://doi.org/10.1097/00005768-199903000-00012
  • McCurdy, K., Walker, J., & Yuen, D. (2018). Gluteus maximus and hamstring activation during selected weight-bearing resistance exercises. The Journal of Strength & Conditioning Research, 32(3), 594-601. https://doi.org/10.1519/JSC.0000000000001893 DOI: https://doi.org/10.1519/JSC.0000000000001893
  • Monajati, A., Larumbe-Zabala, E., Goss-Sampson, M., & Naclerio, F. (2019). Surface electromyography analysis of three squat exercises. Journal of human kinetics, 67(1), 73-83. https://doi.org/10.2478/hukin-2018-0073 DOI: https://doi.org/10.2478/hukin-2018-0073
  • Neto, W. K., Vieira, T. L., & Gama, E. F. (2019). Barbell hip thrust, muscular activation and performance: A systematic review. Journal of sports science & medicine, 18(2), 198.
  • Neumann, D. A. (2010). Kinesiology of the hip: A focus on muscular actions. Journal of Orthopaedic & Sports Physical Therapy, 40(2), 82-94. https://doi.org/10.2519/jospt.2010.3025 DOI: https://doi.org/10.2519/jospt.2010.3025
  • Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019). Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. The Journal of Strength & Conditioning Research, 33(5), 1258-1265. https://doi.org/10.1519/JSC.0000000000003118 DOI: https://doi.org/10.1519/JSC.0000000000003118
  • Pincivero, D. M., Gandhi, V., Timmons, M. K., & Coelho, A. J. (2006). Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions. Journal of biomechanics, 39(2), 246-254. https://doi.org/10.1016/j.jbiomech.2004.11.023 DOI: https://doi.org/10.1016/j.jbiomech.2004.11.023
  • Pryor, R. R., Sforzo, G. A., & King, D. L. (2011). Optimizing power output by varying repetition tempo. The Journal of Strength & Conditioning Research, 25(11), 3029-3034. https://doi.org/10.1519/JSC.0b013e31820f50cb DOI: https://doi.org/10.1519/JSC.0b013e31820f50cb
  • Punkt, K. (2012). Fibre Types in Skeletal Muscles. Springer Science & Business Media.
  • Sakamoto, A., & Sinclair, P. J. (2012). Muscle activations under varying lifting speeds and intensities during bench press. European journal of applied physiology, 112(3), 1015-1025. https://doi.org/10.1007/s00421-011-2059-0 DOI: https://doi.org/10.1007/s00421-011-2059-0
  • Smilios, I., Häkkinen, K., & Tokmakidis, S. P. (2010). Power output and electromyographic activity during and after a moderate load muscular endurance session. The Journal of Strength & Conditioning Research, 24(8), 2122-2131. https://doi.org/10.1519/JSC.0b013e3181a5bc44 DOI: https://doi.org/10.1519/JSC.0b013e3181a5bc44
  • Snyder, B. J., & Fry, W. R. (2012). Effect of verbal instruction on muscle activity during the bench press exercise. The Journal of Strength & Conditioning Research, 26(9), 2394-2400. https://doi.org/10.1519/JSC.0b013e31823f8d11 DOI: https://doi.org/10.1519/JSC.0b013e31823f8d11
  • Stastny, P., Golaś, A., Blazek, D., Maszczyk, A., Wilk, M., Pietraszewski, P., Petr, M., Uhlir, P., & Zając, A. (2017). A systematic review of surface electromyography analyses of the bench press movement task. PloS one, 12(2), e0171632. https://doi.org/10.1371/journal.pone.0171632 DOI: https://doi.org/10.1371/journal.pone.0171632
  • Tsoukos, A., Brown, L. E., Terzis, G., Wilk, M., Zajac, A., & Bogdanis, G. C. (2021). Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise. Scandinavian Journal of Medicine & Science in Sports, 31(11), 2071-2082. https://doi.org/10.1111/sms.14027 DOI: https://doi.org/10.1111/sms.14027
  • van den Tillaar, R., Andersen, V., & Saeterbakken, A. H. (2019). Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS One, 14(5), e0217044. https://doi.org/10.1371/journal.pone.0217044 DOI: https://doi.org/10.1371/journal.pone.0217044
  • van den Tillaar, R., Saeterbakken, A. H., & Ettema, G. (2012). Is the occurrence of the sticking region the result of diminishing potentiation in bench press? Journal of sports sciences, 30(6), 591-599. https://doi.org/10.1080/02640414.2012.658844 DOI: https://doi.org/10.1080/02640414.2012.658844
  • van den Tillaar, R., & Sousa, C. (2019). Comparison of muscle activation and barbell kinematics during bench press with different loads. Acta Kinesiologiae Universitatis Tartuensis, 25, 37-50. https://doi.org/10.12697/akut.2019.25.03 DOI: https://doi.org/10.12697/akut.2019.25.03
  • Watanabe, K., & Akima, H. (2011). Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction. Scandinavian journal of medicine & science in sports, 21(6), e412-e420. https://doi.org/10.1111/j.1600-0838.2011.01347.x DOI: https://doi.org/10.1111/j.1600-0838.2011.01347.x
  • Wilk, M., Stastny, P., Golas, A., Nawrocka, M., Jelen, K., Zajac, A., & Tufano, J. (2018). Physiological responses to different neuromuscular movement task during eccentric bench press. Neuroendocrinology Letters, 39(1), 101-107.