Development of new strategies for the design of in situanalysis devicesnano and biomaterials

  1. Bocanegra Rodríguez, Sara
Dirigida por:
  1. Pilar Campíns-Falcó Directora
  2. Neus Jornet Martínez Codirectora
  3. Carmen Molins Legua Codirectora

Universidad de defensa: Universitat de València

Fecha de defensa: 11 de febrero de 2022

Tribunal:
  1. Rosa Herráez-Hernández Presidenta
  2. Andrew James Secretario/a
  3. Susana Meseguer LLoret Vocal
Departamento:
  1. QUÍM. ANALÍTIC

Tipo: Tesis

Teseo: 704313 DIALNET lock_openTESEO editor

Resumen

There is great need, in general, to develop sustainable analytical methodologies based on the miniaturization, simplification and analytical process automation, with the aim of reducing the environmental impact without compromising the selectivity and sensitivity. Specifically, biosensors, are emerging as a fast and simple method for the in situ detection of compounds in several fields such as healthcare and food and drink industry including environmental and security monitoring among others. The advantages of in situ analysis are (1) in most cases the determination is carried out without isolation of the analyte from its environment, so the sample is not altered from its original conditions and (2) the analytical process including sampling is physically carried out in space and in time reducing the time of the analysis. Also, in situ analyses generally do not require sample treatment which, according to Green Analytical Chemistry principles, minimizes waste generation. On the other hand, Green Chemistry includes the use of safe and clean material and methods to decrease the adverse effects of pollution on the environment. The use of polymer-based biomaterials such as polysaccharides and proteins appears as a responsible option since it allows microorganisms to degrade these materials and directly reduce waste generation. Moreover, biomaterials have generated great interest due to their biocompatibility in food and medical area. The Thesis describes the concept of in situ analysis and biomaterials which have been resulting in the development of several situ devices. These devices are mainly based on the reagent immobilization in solid supports. Nano and (bio)materials have been employed in the development of several (bio)sensors or kits. In order to develop the devices, the two critical points were considered: i) the selection of the support materials where the immobilization of the reagents takes place, ii) the reaction involved in the procedure. It is important to study the reaction between the material and the reagents in order to understand the reagent release to dissolution or the entry of analytes to the solid support. The support material must not react with the reagent or interfere with the measurement. Some of the materials proposed in this Thesis as solid supports for the design of in-situ sensors have been zein, nylon, PDMS and nanocellulose. The characterization of the devices has been performed. New methodologies for analysis in situ based on the employment of (bio)sensors have been proposed for the determination of relevant compounds such as H2O2, phosphate or drugs in complex real matrices like serum, urine or environmental water samples. These analyses have employed different analytical responses depending on the sensibility required. These approaches have been validated and its analytical properties have been compared with other already existing.