Tomografía computerizada aplicada al estudio del esqueleto de los primeros vertebrados

  1. Carlos Martínez Pérez
  2. Jinyuan Huang
  3. María Victoria Paredes Aliaga
  4. Jose Luis Herraiz
  5. Cástor Armañanzas Alpuente
Revista:
Isurus

ISSN: 1888-9441

Any de publicació: 2022

Número: 14

Pàgines: 76-91

Tipus: Article

Altres publicacions en: Isurus

Resum

Els conodonts són un grup de vertebrats extints que posseeixen unes peces mineralitzades anomenades elements conodontals. Encara que són important ferramentes per datar i correlacionar, la seua importància paleobiològica ha estat històricament descurada a causa de la seu tamany i les tècniques d’estudi disponibles. Aquest treball pretén fer una revisió actualitzada del coneixement paleobiològic del grup a la llum de l’ús de les noves tècniques tomogràfiques.

Referències bibliogràfiques

  • AGEMATSU, S., UESUGI, K., SANO, H. Y SASHIDA, K. (2017). Reconstruction of the multielement apparatus of the earliest Triassic conodont, Hindeodus parvus, using synchrotron radiation X-ray micro-tomography. Journal of Paleontology, 91 (6): 1220-1227.
  • ALDRIDGE, R.J., SMITH, M.P., NORBY, R.D. Y BRIGGS, D.E.G. (1987). The architecture and function of Carboniferous polygnathacean conodont apparatuses. En: Aldridge, R.J. (ed.), Paleobiology of Conodonts. British Micropaleontogical Society series, Chichester, Sussex, Ellis Horwood: 63-75.
  • ATAKUL-ÖZDEMIR, A., WARREN, X., MARTIN, P. G., GUIZAR-SICAIROS, M., HOLLER, M., MARONE, F., MARTÍNEZ-PÉREZ, C. Y DONOGHUE, P.C.J. (2021). X-ray nanotomography and electron backscatter diffraction demonstrate the crystalline, heterogeneous and impermeable nature of conodont white matter. Royal Society Open Science, 8 (8): 202013.
  • BENGTSON, S. (1976). The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9: 185-206.
  • BENGTSON, S. (1983). A Functional model for the Conodont Apparatus. Lethaia, 16 (1): 38.
  • BLIECK, A., TURNER, S., BURROW, C.J., SCHULTZE, H.P., REXROAD, C.B., BULTYNCK, P. Y NOWLAN, G.S. (2010) Fossils, histology, and phylogeny: Why conodonts are not vertebrates. Episodes, 33 (4): 234-241.
  • BRIGGS, D.E.G., CLARKSON, E.N.K. Y ALDRIDGE, R.J. (1983). The conodont animal. Lethaia, 16: 1-14.
  • CONWAY-MORRIS, S. (1976). A new Cambrian lophophorate from the Burgess Shale of British Columbia. Palaeontology, 19: 199-222.
  • CONWAY-MORRIS, S. (1980). Conodont function: fallacies of the tooth model. Lethaia, 13: 107-108.
  • DONOGHUE, P.C.J. Y PURNELL, M.A. (1999a). Growth, function, and the conodont fossil record. Geology, 27 (3): 251-254.
  • DONOGHUE, P.C.J. Y PURNELL, M.A. (1999b). Mammal-like occlusion in conodonts. Paleobiology, 25 (1): 58-74.
  • DONOGHUE, P.C.J. (2001). Conodonts meet cladistics: recovering, relationships and assessing the completeness of the conodont fossil record. Paleontology, 44 (1): 65-93.
  • DONOGHUE, P.C.J. Y PURNELL, M.A. (2005). Genome duplication, extinction and vertebrate evolution. Trends in ecology y Evolution, 20 (6): 312-319.
  • DONOGHUE, P.C.J. Y KEATING, J. N. (2014). Early vertebrate evolution. Palaeontology, 57 (5): 879-893.
  • DU BOIS, E.P. (1943). Evidence on the nature of conodonts. Journal of Paleontology, 17: 155–159.
  • EPSTEIN, A.C., EPSTEIN, J.B. Y HARRIS, L.D. (1977). Conodont color alteration: an index to organic metamorphism. U.S. Geological Survey Professional Paper: 1-27.
  • GOUDEMAND, N., ORCHARD, M.J., URDY, S., BUCHER, H. Y TAFFOREAU, P. (2011). Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences, 108 (21): 8720-8724.
  • GOUDEMAND, N., ORCHARD, M.J., TAFFOREAU, P., URDY, S., BRUEHWILER, T., BRAYARD, A., GALFETTI, T. Y BUCHER, H. (2012). Early Triassic conodont clusters from South China: revision of the architecture of the 15 element apparatuses of the superfamily Gondolelloidea. Palaeontology, 55 (5): 1021- 1034.
  • HINDE, G.J. (1879). On conodonts from the Chazy and Cincinnatti Group of the CambroSilurian, and from the Hamilton and GeneseeShale division of the Devonian, in Canada and the United States. Geological Society of London, Quarterly Journal, 35: 351-369.
  • HUANG, J., HU, S., ZHANG, Q., DONOGHUE, P.C., BENTON, M.J., ZHOU, C., MARTÍNEZPÉREZ, C., WEN, W., XIE, T., CHEN, Z.Q., LUO, M., YAO, H. Y ZHANG, K. (2019a). Gondolelloid multielement conodont apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, southwestern China. Palaeogeography, palaeoclimatology, palaeoecology, 522: 98-110.
  • HUANG, J.Y., MARTÍNEZ-PÉREZ, C., HU, S.X., DONOGHUE, P.C., ZHANG, Q.Y., ZHOU, C.Y., WEN, W., BENTON M.J., LUO, M., YOU, G.Z. Y ZHANG, K.X. (2019b). Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography. Palaeoworld, 28 (4): 429-440.
  • HUANG, J., MARTÍNEZ-PÉREZ, C., HU, S., ZHANG, Q., ZHANG, K., ZHOU, C., WEN, W., XIE, T., BENTON, M.J., CHEN, Z.Q., LUO. M. Y DONOGHUE, P.C. (2019c). Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations. Palaeontology, 62 (5): 823-835.
  • JOACHIMSKI, M.M., BREISIG, S., BUGGISCH, W., TALENT, J.A., MAWSON, R., GEREKE, M., MORROW, J.R., DAY, J. Y WEDDIGE, K. (2009). Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284: 3-4.
  • JONES, D., EVANS, A.R., RAYFIELD, E.J., SIU, KK. Y DONOGHUE, P.C.J. (2012a). Testing microstructural adaptation in the earliest dental tools. Biology Letters, 8 (6): 952-955.
  • JONES, D., EVANS, A.R., SIU, K.K.W., RAYFIELD, E.J. Y DONOGHUE, P.C.J. (2012b). The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society of London B, 279: 2849–2854.
  • KOENIGSWALD, VON W. (1988) Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel. En: Russell, D.E., SigogneauRussell, D. (eds.), Teeth Revisited. Paris, Mémoires du muséum national d’histoire naturelle, série C, 53: 148–165.
  • LINDSTRÖM, M. (1974). The conodont apparatuses as a food gathering mechanism. Paleontology, 17: 729-744.
  • MARTÍNEZ-PÉREZ, C.M., PLASENCIA, P. Y BOTELLA, H. (2010). Paleontología de conodontos: una revisión histórica. Cidaris, (30): 179-186.
  • MARTÍNEZ-PÉREZ, C., RAYFIELD, E.J., PURNELL, M.A. Y DONOGHUE, P.C.J. (2014a). Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology, 57 (5): 1059-1066.
  • MARTÍNEZ-PÉREZ, C., PLASENCIA, P., JONES, D., KOLAR-JURKOVŠEK, T., SHA, J., BOTELLA, H. Y DONOGHUE, P.C.J. (2014b). There is no general model for occlusal kinematics in conodonts. Lethaia, 47 (4): 547-555.
  • MARTÍNEZ-PÉREZ, C., RAYFIELD, E.J., BOTELLA, H. Y DONOGHUE, P.C.J. (2016). Translating taxonomy into the evolution of conodont feeding ecology. Geology, 44(4), 247- 250.
  • MAZZA, M. Y MARTÍNEZ-PÉREZ, C. (2015). Unravelling conodont (Conodonta) ontogenetic processes in the Late Triassic through growth series reconstructions and X-ray microtomography. Bollettino della Società Paleontologica Italiana, 54 (3): 161-186.
  • MAZZA, M. Y MARTÍNEZ-PÉREZ, C. (2016). Evolutionary convergence in conodonts revealed by synchrotron-based tomographic microscopy. Palaeontologia Electronica, 19 (3): 52A.
  • MURDOCK, D.J., SANSOM, I.J. Y DONOGHUE, P.C.J. (2013a). Cutting the first ‘teeth’: a new approach to functional analysis of conodont elements. Proceedings of the Royal Society B: Biological Sciences, 280 (1768): 20131524.
  • MURDOCK, D.J., DONG, X.P., REPETSKI, J.E., MARONE, F., STAMPANONI, M. Y DONOGHUE, P.C.J. (2013b). The origin of conodonts and of vertebrate mineralized skeletons. Nature, 502 (7472): 546-549.
  • MURDOCK, D.J., RAYFIELD, E.J. Y DONOGHUE, P.C.J. (2014). Functional adaptation underpinned the evolutionary assembly of the earliest vertebrate skeleton. Evolution y development, 16 (6): 354-361.
  • MURDOCK, D.J. Y SMITH, M.P. (2021). Panderodus from the Waukesha Lagerstätte of Wisconsin, USA: a primitive macrophagous vertebrate predator. Papers in Palaeontology, 7 (4): 1977-1993.
  • NAVAS-PAREJO, P. Y MARTÍNEZ-PÉREZ C. (2017). Paleobiología de Conodontos: anatomía, función y afinidades biológicas. En: Paleobiologia: Interpretando procesos de la vida pasada. (Coord. Sergio R.S. Cevalos-Ferriz & Alma Rosa Huerta Vergara). pp. 249-272 Universidad Autónoma de México, Facultad de Ciencias: Dirección General de Publicaciones y Fomento Editorial. ISBN 978-607-02-9343-6
  • NICOLL, R.S. (1977). Conodont apparatuses in an Upper Devonian palaeoniscoid fish from the Canning Basin, Western Australia. Bureau of Mineral Resources Journal of Australian Geology and Geophysics, 2: 217-228.
  • NICOLL, R.S. (1985). Multielement composition of the conodont species Polygnathus xylus xylus Stauffer, 1940 and Ozarkodina brevis (Bischoff y Ziegler, 1957) from the Upper Devonian of the Canning Basin, Western Australia. Bureau of Mineral Resources Journal of Australian Geology and Geophysics: 9, 133-147.
  • NICOLL R.S. (1987). Form and Function of the Paelement in the conodont animal. En: Aldridge, R.J. (ed.), Paleobiology of Conodonts. British Micropaleontogical Society series, Chichester, Sussex, Ellis Horwood: 77-90.
  • NICOLL, R.S. (1995). Conodont element morphology, apparatus reconstructions and element function: A new interpretation of conodont biology and taxonomic implications. Courier Forschungsinstitut Senckenberg, 182: 247-262.
  • PANDER, C.H. (1856). Monography der fossilen Fische des Silurischen Systems der Russich-Baltischen Gouvernements. Akademie der Wissenschaften St. Petersburg: 91pp.
  • PIETZNER, H., VAHL, J., WERNER, H. Y ZIEGLER, W. (1968). Zur chemischen Zusammensetzung und Mikromorphologie der Conodonten: Paleontographica, 128: 115-152.
  • PLASENCIA, P. (2009). Bioestratigrafía y paleobiología de conodontos del triásico medio del sector oriental de la Península Ibérica. Universitat de València.
  • PURNELL, M.A. Y VON BITTER, P.H. (1992). Blade-shaped conodont elements functioned as cutting teeth. Nature, 359: 629-630.
  • PURNELL, M.A. (1993). Feeding mechanisms of conodonts and the function of the earliest vertebrate hard tissue. Geology, 21: 375-377.
  • PURNELL, M.A. (1994). Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia, 27: 129-138.
  • PURNELL, M.A. (1995). Microwear on conodont elements and macrophagy in the first vertebrates. Nature, 374: 798-800.
  • PURNELL, M.A. Y DONOGHUE, P.C.J. (1997). Architecture and functional morphology of the skeletal apparatus af ozarkodinid conodonts. Philosophical Transactions of the Royal Society of London, Series B, 352: 1545- 1564.
  • PURNELL, M.A. Y DONOGHUE, P.C.J. (1998). Skeletal architecture, homologies and taphonomy of ozarkodinid conodonts. Palaeontology, 41 (1): 57-102.
  • RENSBERGER, J.M. Y VON KOENIGSWALD, W. (1980). Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology, 6: 477-495.
  • RENSBERGER, J.M. (1995). Determination of stresses in mammalian dental enamel and their relevance to the interpretation of feeding behaviours in extinct taxa. En: Thomason, J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge, Cambridge University Press: 151–172.
  • RENSBERGER, J.M. (1997). Mechanical adaptations in enamel. En: Koenigswald, W.V., Sander, P.M., Tooth enamel microstructure. Rotterdam, A.A. Baslkema: 237–257.
  • SCHMIDT, H. (1934). Conodonten-Funde in ursprunglichem zusammenhang. Paläontologische Zeitschrift, 16: 76-85.
  • SCOTT, H.W. (1934). The zoological relationships of the conodonts. Journal of Paleontology, 8: 448–455.
  • SCOTT, H.W. (1942). Conodont assemblages from the Heath Shale Formation, Montana. Journal of Paleontology, 16: 293-300.
  • SMITH, M.M., SANSOM, I.J. Y SMITH, M.P. (1996). Vertebrate mineralized tissues. Modern Geology, 20: 303-319.
  • SUN, Z., LIU, S., JI, C., JIANG, D. Y ZHOU, M. (2020). Synchrotron-aided reconstruction of the prioniodinin multielement conodont apparatus (Hadrodontina) from the Lower Triassic of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109913.
  • SUN, Z., LIU, S., JI, C., JIANG, D. Y ZHOU, M. (2021). Gondolelloid multielement conodont apparatus (Scythogondolella) from the Lower Triassic of Jiangsu, East China, revealed by high-resolution X-ray microtomography. Palaeoworld, 30 (2): 286-295.
  • SUTTNER, T.J., KIDO, E. Y BRIGUGLIO, A. (2018). A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae. Journal of Systematic Palaeontology, 16 (11): 909-926.
  • SUTTON, M., RAHMAN, I., & GARWOOD, R. (2013). Techniques for virtual palaeontology. John Wiley & Sons.
  • SWEET, W.C. (1981). Glossary of morphological and structural terms for conodont elements and apparatuses. En: Moore, R.C. (ed), Treatise on Invertebrate Paleontology, Part W, Miscellanea Supplement 2, Conodonta. Geological Society of America: 60-67.
  • SWEET, W.C. (1988). The Conodonta: Morphology, Taxonomy, Paleoecology, and evolutionary history of a long-extinct animal phylum: New York, Oxford, Clarendon Press, Oxford Monographs on Geology and Geophysics, 10: 212 pp.
  • TURNER, S., BURROW, C.J., SCHULTZE, H.P., BLIECK, A., REIF, W.E., REXROAD, C.B., BULTYNCK, P. Y NOWLAN, G.S. (2010). False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas, 32 (4): 545-594.
  • ZENG, W., PURNELL, M.A., JIANG, H. Y ZHANG, M. (2021). Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32 (3): 709- 724.
  • ZHANG, M., JIANG, H., PURNELL, M.A. Y LAI, X. (2017). Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus. Palaeontology, 60 (4): 595- 608.