Macro- and microevolutionary perspectives on "Seynesiella juniperi", a fungus in the Venturiales (Dothideomycetes, Ascomycota)

  1. Garrido Benavent, Isaac 1
  1. 1 Museo Nacional de Ciencias Naturales
    info

    Museo Nacional de Ciencias Naturales

    Madrid, España

    ROR https://ror.org/02v6zg374

Journal:
Botanica complutensis

ISSN: 0214-4565

Year of publication: 2021

Issue: 45

Pages: 115-126

Type: Article

DOI: 10.5209/BOCM.73217 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Botanica complutensis

Sustainable development goals

Abstract

The present work represents the first comprehensive phylogenetic study of the dothideomycete genus "Seynesiella". The genus belongs into the family Cylindrosympodiaceae within the order Venturiales, based on a phylogeny reconstructed with five loci. The high genetic diversity found within the type species, S. juniperi, points towards cryptic speciation, with up to five distinct species that might be associated to different Juniperus hosts. Combining phylogenetics and multi-locus delimitation analyses, together with more detailed measurements of ascospores, will be fundamental for a better understanding of species boundaries and the biogeographic history of the delimited species, as well as for revealing more specific fungal-plant association patterns.

Bibliographic References

  • Adams, R.P. & Schwarzbach, A.E. 2013. Phylogeny of Juniperus using nrDNA and four cpDNA regions. Phytologia 95(2): 179-187.
  • Alves, A., Crous, P.W., Correia, A. & Phillips, A.J.L. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 28: 1-13.
  • Ametrano, C.G., Grewe, F., Crous, P.W., Goodwin, S.B., Liang, C., Selbmann, L., Lumbsch, H.T., Leavitt, S.D. & Muggia, L. 2019. Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus 10(1): 19. doi: https://doi.org/10.1186/s43008-019-0018-2
  • Arnaud, G. 1918. Lés Asterinées. Ann. Écol. Nat. Agric. Montpellier 16: 1-288.
  • Barr, M.E. 1968. The Venturiaceae in North America. Canad. J. Bot. 46: 799-864.
  • Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K.K. & Das, I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22(3): 148-155. doi: https://doi.org/10.1016/j.tree.2006.11.004
  • Crous, P.W., Groenewald, J.Z., Pongpanich, K., Himaman, W., Arzanlou, M. & Wingfield, M.J. 2004. Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Stud. Mycol. 50(2): 457-469.
  • Dennis, R. 1957. New British Fungi. Kew Bull. 12(3): 399-404.
  • Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29: 1969-1973. doi: https://doi.org/10.1093/molbev/mss075
  • GBIF Secretariat. 2019. Seynesiella juniperi (Desm.) G.Arnaud. GBIF Backbone Taxonomy. Checklist dataset at https://doi.org/10.15468/39omei. Accessed via GBIF.org on 2020-12-22.
  • Greene, H.C. 19671968. Notes on Wisconsin parasitic fungi. XXXIII. Trans. Wis. Acad. Sci. Arts Lett. 56: 263-280.
  • Haridas, S., Albert, R., Binder, M. et al. 2020. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 96: 141-153. doi: https://doi.org/10.1016/j.simyco.2020.01.003
  • Hongsanan, S., Hyde, K.D., Phookamsak, R. et al. 2020a. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11(1): 1553-2107. doi: https://doi.org/10.17169/refubium-28490
  • Hongsanan, S., Hyde, K.D., Phookamsak, R. et al. 2020b. Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Divers. 105: 17.318. doi: https://doi.org/10.1007/s13225-020-00462-6
  • Hyde, K.D., Jones, E.B.G., Liu, JK. et al. 2013. Families of Dothideomycetes. Fungal Divers. 63: 1-313. doi: https://doi.org/10.1007/s13225-013-0263-4
  • Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066. doi: https://doi.org/10.1093/nar/gkf436.
  • Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780. doi: https://doi.org/10.1093/molbev/mst010
  • Kendrick, W.B. 1958. Sympodiella, a new hyphomycete genus. Trans. Brit. Mycol. Soc. 41(4): 519-IN9.
  • Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695-1701. doi: https://doi.org/10.1093/molbev/mss020
  • Lee, O. & Golinski, K. 2020. University of British Columbia Herbarium (UBC) - Fungi Collection. Version 14.6. University of British Columbia. Occurrence dataset https://doi.org/10.5886/h4px7g4b. Accessed via GBIF.org on 2020-12-22. https://www.gbif.org/occurrence/1987954765
  • Lumbsch, H.T. & Huhndorf, S.M. 2010. Myconet. Volume 14. Part One. Outline of Ascomycota-2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751-5113. Fieldiana Life Earth Sci. 2010(1): 1-64.
  • Luttrell, E.S. 1965. Classification of the Loculoascomycetes. Phytopathology 55: 828-833.
  • Mao, K., Hao, G., Liu, J., Adams, R.P. & Milne, R.I. 2010. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytol. 188(1): 254-272. doi: https://doi.org/10.1111/j.1469-8137.2010.03351.x
  • Mason-Gamer, R.J. & Kellogg, E.A. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45: 524-545.
  • Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing EnvironmentsWorkshop (GCE): 1-8. New Orleans.
  • Müller, E., von Arx, J.A. 1962. Die Gattungen der didymosporen Pyrenomyceten. Beitr. Kryptogamenfl. Schweiz 11: 1-922.
  • Olariaga, I. 2018. Fungal occurrences from the Basque Country and neighboring areas: ARAN-Fungi. Version 1.4. Aranzadi Science Society. Occurrence dataset https://doi.org/10.15470/dtsml1. Accessed via GBIF.org on 2020-12-22. https://www.gbif.org/occurrence/1901096629
  • Pem, D., Jeewon, R., Bhat, D.J., Doilom, M., Boonmee, S., Hongsanan, S., Promputtha, I., Xu, J.C. & Hyde, K.D. 2019. Mycosphere Notes 275-324: A morphotaxonomic revision and typification of obscure Dothideomycetes genera (incertae sedis). Mycosphere 10(1): 1115-1246. doi: https://doi.org/10.5943/mycosphere/10/1/22
  • Pérez-Ortega, S., Garrido-Benavent, I., Grube, M., Olmo, R. & de los Ríos, A. 2016. Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomycetae). Fungal Divers. 80(1): 285-300. doi: https://doi.org/10.1007/s13225-016-0361-1
  • Petrak, F. 1949. Beiträge zur Pilzflora Irans. Sydowia 3: 268-332.
  • Pringle, A., Baker, D.M., Platt, J.L., Wares, J.P., Latge, J.P. & Taylor, J.W. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59(9): 1886-1899.
  • Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21: 1864-1877. doi: https://doi.org/10.1111/j.1365-294X.2011.05239.x
  • Saccardo, P.A. 1878. Fungi Veneti novi vel critici mycologiae. Venetae Addendi. VII. Michelia 1(2): 133-221.
  • Schoch, C.L., Crous, P.W., Groenewald, J.Z. et al. 2009. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 64: 1-15. doi: https://doi.org/10.3114/sim.2009.64.01.
  • Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. U.S.A. 109: 6241-6246. doi: https://doi.org/10.1073/pnas.1117018109
  • Shen, M., Zhang, J.Q., Zhao, L.L., Groenewald, J.Z., Crous, P.W. & Zhang, Y. 2020. Venturiales. Stud. Mycol. 96: 185-308. doi: https://doi.org/10.1016/j.simyco.2020.03.001
  • Sierra López, D. 2006. Contribución al estudio de los ascomicetes bitunicados de Cataluña. Acta Bot. Barc. 50: 5-434.
  • Sivanesan, A. & Shivas, R.G. 2002. New species of foliicolous Loculoascomycetes on Dysoxylum, Melaleuca and Syzygium from Queensland, Australia. Fungal Divers. 11: 151-158.
  • Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688.2690. doi: https://doi.org/10.1093/bioinformatics/btl446
  • Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A fast bootstrapping algorithm for the RAxML web-servers. Syst. Biol. 57: 758-771. doi: https://doi.org/10.1080/10635150802429642
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. doi: https://doi.org/10.1093/molbev/msr121
  • Valenzuela-López, N., Cano-Lira, J.F., Guarro, J., Sutton, D.A., Wiederhold, N., Crous, P.W. & Stchigel, A.M. 2018. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitaceae and Didymellaceae. Stud. Mycol. 90: 1-69. doi: https://doi.org/10.1016/j.simyco.2017.11.003
  • Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C. et al. 2017. Notes for genera: Ascomycota. Fungal Divers. 86(1): 1-594. doi: https://doi.org/10.1007/s13225-017-0386-0
  • Wu, H.X., Schoch, C.L., Boonmee, S., Bahkali, A.H., Chomnunti, P. & Hyde, K.D. 2011. A reappraisal of Microthyriaceae. Fungal Divers. 51(1): 189-248. doi: https://doi.org/10.1007/s13225-011-0143-8
  • Zhang, Y., Crous, P.W., Schoch, C.L., Bahkali, A.H., Guo, L.D. & Hyde, K.D. 2011. A molecular, morphological and ecological re-appraisal of Venturiales-a new order of Dothideomycetes. Fungal Divers. 51(1): 249-277. doi: https://doi.org/10.1007/s13225-011-0141-x