Evaluación de los parámetros biométricos del segmento anterior en niños y adolescentes y su correlación con las propiedades biomecánicas corneales

  1. Inmaculada Bueno Gimeno 1
  2. Noelia Martínez Albert 1
  3. Enrique España Gregori 2
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Hospital Universitario y Politécnico La Fe. Valencia
Zeitschrift:
Gaceta de optometría y óptica oftálmica

ISSN: 2173-9366

Datum der Publikation: 2020

Nummer: 563

Seiten: 36-43

Art: Artikel

Andere Publikationen in: Gaceta de optometría y óptica oftálmica

Zusammenfassung

El propósito de este estudio es evaluar la relación entre los parámetros del segmento anterior en niños y adolescentes y su correlación con la biomecánica corneal. En este trabajo se seleccionaron 293 ojos de 293 niños, pertenecientes a distintos grupos refractivos (emétropes, miopes e hipermétropes), con edades comprendidas entre los 6 y 17 años. Para la valoración de la longitud axial (LA), se utilizó el IOLMaster, y los parámetros del segmento anterior se evaluaron mediante el Pentacam. Los parámetros proporcionados del segmento anterior fueron: espesor corneal central (ECC), volumen corneal (VC), profundidad de la cámara anterior (PCA) y volumen de la cámara anterior (VCA), así como la queratometría media (Kmedia) de la superficie anterior y posterior corneal. La biomecánica corneal se valoró mediante el analizador de respuesta ocular (ORA), el cual nos proporciona los valores de histéresis corneal (CH) y del factor de resistencia corneal (CRF). El análisis estadístico se realizó mediante el programa SPSS v24.0 para Windows (IBM Corp, Armonk, New York, USA), considerando p-valor <0.05 como estadísticamente significativo. Los resultados mostraron que, en niños sanos, CH y CRF se correlacionaban positivamente con ECC y VC mientras que con LA la correlación fue negativa.

Bibliographische Referenzen

  • Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central Corneal Thickness and Corneal Hysteresis Associated With Glaucoma Damage. Am J Ophthalmol. 2006;141(5):868-75.
  • Fontes BM, Ambrosio R, Jardim D, Velarde GC, Nose W. Corneal Biomechanical Metrics and Anterior Segment Parameters in Mild Keratoconus. Ophthalmology. 2010;117(4):673-9.
  • Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol. 2009;87(8):901-5.
  • Mansouri K, Leite MT, Weinreb RN, Tafreshi A, Zangwill LM, Medeiros FA. Association Between Corneal Biomechanical Properties and Glaucoma Severity. Am J Ophthalmol. 2012;153(3):419-27.e1.
  • Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026-31.
  • Scheibenberger D, Frings A, Steinberg J, Schuler H, Druchkiv V, Katz T, von Kodolitsch Y, Linke S. Ocular manifestation in Marfan syndrome: corneal biomechanical properties relate to increased systemic score points. Graefes Arch Clin Exp Ophthalmol. 2018;256(6):1159-63.
  • Steinberg J, Amirabadi NE, Frings A, Mehlan J, Katz T, Linke SJ. Keratoconus Screening With Dynamic Biomechanical In Vivo Scheimpflug Analyses: A Proof-of-Concept Study. J Refract Surg. 2017;33(11):773-8.
  • Shah S, Laiquzzaman M, Cunliffe I, Mantry S. The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye. 2006;29(5):257-62.
  • Alhamad TA, Meek KM. Comparison of factors that influence the measurement of corneal hysteresis in vivo and in vitro. Acta Ophthalmol. 2011;89(5):e443-50.
  • Qiu K, Lu X, Zhang R, Wang G, Zhang M. Corneal Biomechanics Determination in Healthy Myopic Subjects. J Ophthalmol. 2016;2016:2793516.
  • Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vision Res. 2008;48(21):2167-71.
  • Huang Y, Huang C, Li L, Qiu K, Gong W, Wang Z, Wu X, Du Y, Chen B, Lam DSC, et al. Corneal Biomechanics, Refractive Error, and Axial Length in Chinese Primary School Children. Invest Ophthalmol Vis Sci. 2011;52(7):4923-8.
  • Bueno-Gimeno I, Espana-Gregori E, Gene-Sampedro A, Lanzagorta-Aresti A, Pinero-Llorens DP. Relationship among corneal biomechanics, refractive error, and axial length. Optom Vis Sci. 2014;91(5):507-13.
  • Lim L, Gazzard G, Chan YH, Fong A, Kotecha A, Sim EL, Tan D, Tong L, Saw SM. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Invest Ophthalmol Vis Sci. 2008;49(9):3852-7.
  • Radhakrishnan H, Miranda MA, O’Donnell C. Corneal biomechanical properties and their correlates with refractive error. Clin Exp Optom. 2012;95(1):12-8.
  • Fontes BM, Ambrosio R, Jr., Alonso RS, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy Brazilian patients. J Refract Surg. 2008;24(9):941-5.
  • Kirwan C, O’Keefe M, Lanigan B. Corneal Hysteresis and Intraocular Pressure Measurement in Children Using the Reichert Ocular Response Analyzer. Am J Ophthalmol. 2006;142(6):990-2.
  • Kotecha A, Elsheikh A, Roberts CR, Zhu HG, Garway-Heath DF. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337-47.
  • Kamiya K, Shimizu K, Ohmoto F. Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg. 2009;25(10):888-93.
  • Hwang HS, Park SK, Kim MS. The biomechanical properties of the cornea and anterior segment parameters. BMC Ophthalmology.2013;13(1):49.
  • Çevik SG, Kıvanç SA, Akova-Budak B, Tok-Çevik M. Relationship among Corneal Biomechanics, Anterior Segment Parameters, and Geometric Corneal Parameters. J Ophthalmol. 2016;2016.
  • Viswanathan D, Kumar NL, Males JJ, Graham SL. Relationship of Structural Characteristics to Biomechanical Profile in Normal, Keratoconic, and Crosslinked Eyes. Cornea.2015;34(7):791-6.
  • Wong YZ, Lam AK. Influence of corneal astigmatism, corneal curvature and meridional differences on corneal hysteresis and corneal resistance factor. Clin Exp Optom. 2011;94(5):418-24.
  • Rosa N, Lanza M, De Bernardo M, Signoriello G, Chiodini P. Relationship Between Corneal Hysteresis and Corneal Resistance Factor with Other Ocular Parameters. Semin Ophthalmol. 2015;30(5-6):335-9.
  • Bueno-Gimeno I. Cambios anatómicos en el proceso de emetropización: Influencia en las propiedades biomecánicas corneales y los parámetros anatómicos oculares. Spain: Universidad Católica de Valencia; 2013.
  • Giordano L, Friedman DS, Repka MX, Katz J, Ibironke J, Hawes P, Tielsch JM. Prevalence of Refractive Error among Preschool Children in an Urban Population: The Baltimore Pediatric Eye Disease Study. Ophthalmology. 2009;116(4):739-46.e4.
  • Lau W, Pye DC. Associations between diurnal changes in Goldmann tonometry, corneal geometry, and ocular response analyzer parameters. Cornea. 2012;31(6):639-44.
  • Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52 Suppl 2:S109-14.
  • Santodomingo-Rubido J, Mallen EAH, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol. 2002;86(4):458-62.
  • Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K. Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg. 2008;34(1):103-13.
  • Bueno-Gimeno I, Gene-Sampedro A, Pinero-Llorens DP, Lanzagorta- Aresti A, Espana-Gregori E. Corneal biomechanics, retinal nerve fiber layer, and optic disc in children. Optom Vis Sci. 2014;91(12):1474-82.
  • Hashemi H, Jafarzadehpur E, Mehravaran S, Yekta A, Ostadimoghaddam H, Norouzirad R, Khabazkhoob M. Corneal resistance factor and corneal hysteresis in a 6- to 18-year-old population. J Cataract Refract Surg. 2014;40(9):1446-53.
  • Chang PY, Chang SW, Wang JY. Assessment of corneal biomechanical properties and intraocular pressure with the Ocular Response Analyzer in childhood myopia. Br J Ophthalmol. 2010;94(7):877-81.
  • Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, Lu F. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye. 2011;25(8):1083-9.
  • Narayanaswamy A, Chung RS, Wu RY, Park J, Wong WL, Saw SM, Wong TY, Aung T. Determinants of corneal biomechanical properties in an adult Chinese population. Ophthalmology. 2011;118(7):1253-9.
  • Kotecha A, Russell RA, Sinapis A, Pourjavan S, Sinapis D, Garway-Heath DF. Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes. BMC Ophthalmology. 2014;14:11.
  • Leite MT, Alencar LM, Gore C, Weinreb RN, Sample PA, Zangwill LM, Medeiros FA. Comparison of Corneal Biomechanical Properties Between Healthy Blacks and Whites Using the Ocular Response Analyzer. Am J Ophthalmol. 2010;150(2):163-8.e1.
  • Chua J, Nongpiur ME, Zhao W, Tham YC, Gupta P, Sabanayagam C, Aung T, Wong TY, Cheng CY. Comparison of Corneal Biomechanical Properties between Indian and Chinese Adults. Ophthalmology. 2017;124(9):1271-9.