Virus entéricos humanos en alimentosdetección y métodos de inactivación

  1. Randazzo, Walter 1
  2. Falcó, Irene 2
  3. Pérez-Cataluña, Alba 2
  4. Sánchez, Gloria 2
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Instituto de Agroquímica y Tecnología de Alimentos Consejo Superior de Investigaciones Científicas
Revista:
Arbor: ciencia, pensamiento y cultura

ISSN: 0210-1963

Ano de publicación: 2020

Volume: 196

Número: 795

Tipo: Artigo

DOI: 10.3989/ARBOR.2020.795N1003 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Arbor: ciencia, pensamiento y cultura

Resumo

Los principales patógenos víricos que podemos ad­quirir ingiriendo alimentos contaminados son los norovirus, el virus de la hepatitis A y el virus de la hepatitis E que se propagan principalmente a través de la vía fecal oral. En los últimos años, la incidencia de brotes de transmisión alimentaria causados por estos patógenos ha experimentado un aumento considerable, en parte debido al comercio globalizado y a los cambios en los hábitos de consumo. Las matrices alimentarias que mayor riesgo representan para el consumidor son los moluscos bivalvos, ve­getales de IV gama, frutas tipo baya y platos listos para comer. Actualmente las técnicas moleculares son las más habituales para la detección de estos patógenos en alimentos, aunque toda­vía existen dudas acerca del significado de la presencia de estos genomas víricos en términos de seguridad alimentaria. La infec­tividad de estos patógenos en alimentos viene también determi­nada por su elevada persistencia ambiental y por su resistencia a los tratamientos aplicados para la conservación de los alimentos.

Referencias bibliográficas

  • Aarestrup, F. M., Brown, E. W., Detter, C., Gerner-Smidt, P., Gilmour, M. W., Harmsen, D. […] y Schlundt, J. (2012). Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerging Infectious Diseases, 18 (11), e1.
  • Amankwaah, C. (2013). Incorporation of selected plant extracts into edible chitosan films and the effect on the antiviral, antibacterial and mechanical properties of the material. [Tesis doctoral inédita]. The Ohio State University. Disponible en http://rave.ohiolink.edu/etdc/ view?acc_num=osu1366220367
  • Aw, T. G., Wengert, S. y Rose, J. B. (2016). Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. International Journal of Food Microbiology, 223, pp. 50-56.
  • Bartsch, C., Höper, D., Mäde, D. y Johne, R. (2018). Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next generation sequencing and digital PCR. Food Microbiology, 76, pp. 390-395.
  • Bosch, A., Sánchez, G., Abbaszadegan, M., Carducci, A., Guix, S., Le Guyader, F. S. […] y Sellwood, J. (2011). Analytical Methods for Virus Detection in Water and Food. Food Analytical Methods, 4 (1), pp. 4-12.
  • Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J. M., Segall, A. M., Mead, D., Azam, F. y Rohwer, F. (2002). Genomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences of the United States of America, 99 (22), pp. 14250-14255.
  • Briese, T., Kapoor, A., Mishra, N., Jain, K., Kumar, A., Jabado, O. J. y Ian Lipkina, W. (2015). Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. MBio, 6 (5), e01491-15.
  • Conceição-Neto, N., Zeller, M., Lefrère, H., De Bruyn, P., Beller, L., Deboutte, W. [...] Matthijnssens, J. (2015). Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Scientific Reports, 5 (1), 16532.
  • Costantini, V., Morantz, E. K., Browne, H., Ettayebi, K., Zeng, X. L., Atmar, R. L., Estes, M. K. y Vinjé, J. (2018). Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation. Emerging Infectious Diseases, 24 (8), pp. 1453-1464.
  • Cotten, M., Oude Munnink, B., Canuti, M., Deijs, M., Watson, S. J., Kellam, P. y van der Hoek, L. (2014). Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS ONE, 9 (4), e93269.
  • Coudray-Meunier, C., Fraisse, A., Martin- Latil, S., Guillier, L. y Perelle, S. (2013). Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology, 13 (1), 216.
  • DiCaprio, E., Ma, Y., Purgianto, A., Hughes, J. y Li, J. (2012). Internalization and dissemination of human norovirus and animal caliciviruses in hydroponically grown romaine lettuce. Applied and Environmental Microbiology, 78 (17), pp. 6143-6152.
  • European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16 (12), e05500.
  • European Food Safety Authority (EFSA) (2019). Scientific report on analysis of the European baseline survey of norovirus in oysters. EFSA Journal, 17 (7), e05762.
  • Fabra, M. J., Castro-Mayorga, J. L., Randazzo, W., Lagarón, J. M., López-Rubio, A., Aznar, R. y Sánchez, G. (2016). Efficacy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorporation Into Biodegradable Multilayer Systems of Interest in Food Packaging. Food and Environmental Virology, 8 (2), pp. 125-132.
  • Falcó, I., Flores-Meraz, P. L., Randazzo, W., Sánchez, G., López-Rubio, A. y Fabra, M. J. (2019). Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocolloids, 87, pp. 611-618.
  • Falcó, I., Randazzo, W., Sánchez, G., López- Rubio, A. y Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral ediblecoatings of interest in berries. Food Hydrocolloids, 92, pp. 74-85.
  • Falcó, I., Randazzo, W., Rodríguez-Díaz, J., Gozalbo-Rovira, R., Luque, D., Aznar, R. y Sánchez, G. (2019). Antiviral activity of aged green tea extract in model food systems and under gastric conditions. International Journal of Food Microbiology, 292, pp. 101-106.
  • Falcó, I., Randazzo, W., Gómez-Mascaraque, L. G., Aznar, R., López-Rubio, A. y Sánchez, G. (2018). Fostering the antiviral activity of green tea extract for sanitizing purposes through controlled storage conditions. Food Control, 84, pp. 485-492.
  • Fernandez-Cassi, X., Timoneda, N., Gonzales-Gustavson, E., Abril, J. F., Bofill-Mas, S. y Girones, R. (2017). A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. International Journal of Food Microbiology, 257, pp. 80-90.
  • Fraisse, A., Coudray-Meunier, C., Martin- Latil, S., Hennechart-Collette, C., Delannoy, S., Fach, P. y Perelle, S. (2017). Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. International Journal of Food Microbiology, 243, pp. 36-45.
  • Fraisse, A., Niveau, F., Hennechart-Collette, C., Coudray-Meunier, C., Martin-Latil, S. y Perelle, S. (2018). Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. International Journal of Food Microbiology, 269, pp. 64-74.
  • Fuster, N., Pintó, R. M., Fuentes, C., Beguiristain, N., Bosch, A. y Guix, S. (2016). Propidium monoazide RTqPCR assays for the assessment of hepatitis A inactivation and for a better estimation of the health risk of contaminated waters. Water Research, 101, pp. 226-232.
  • Joshi, S. S., Su, X. y D’Souza, D. H. (2015). Antiviral effects of grape seed extract against feline calicivirus, murine norovirus, and hepatitis A virus in model food systems and under gastric conditions. Food Microbiology, 52, pp. 1-10.
  • Kupferschmidt, K. (2016). Europe’s new hepatitis problem. Science, 353 (6302), pp. 862-863.
  • Li, D., Baert, L., Zhang, D., Xia, M., Zhong, W., Van Coillie, E., Jiang, X. y Uyttendaele, M. (2012). Effect of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless steel discs, and in lettuce wash water. Applied and Environmental Microbiology, 78 (21), pp. 7572-7578.
  • López-Gálvez, F., Randazzo, W., Vásquez, A., Sánchez, G., Tombini Decol, L., Aznar, R., Gil, M. I. y Allende, A. (2018). Irrigating Lettuce with Wastewater Effluent: Does Disinfection with Chlorine Dioxide Inactivate Viruses? Journal of Environmental Quality, 47 (5), pp. 1139-1145.
  • Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A., Hardouin, G., Lombard, B., in’t Veld, P. y Leclercq, A. (2019). Validation of ISO method 15216 part 1 – Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Microbiology, 288, pp. 82-90.
  • Moreno, L., Aznar, R. y Sánchez, G. (2015). Application of viability PCR to discriminate the infectivity of hepatitis A virus in food samples. International Journal of Food Microbiology, 201, pp. 1-6.
  • Nieuwenhuijse, D. F. y Koopmans, M. P. G. (2017). Metagenomic sequencing for surveillance of food- and waterborne viral diseases. Frontiers in Microbiology, 8, 230.
  • Park, E. J., Kim, K. H., Abell, G. C. J., Kim, M. S., Roh, S. W. y Bae, J. W. (2011). Metagenomic analysis of the viral communities in fermented foods. Applied and Environmental Microbiology, 77 (4), pp. 1284-1291.
  • Persson, S., Eriksson, R., Lowther, J., Ellström, P. y Simonsson, M. (2018). Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. International Journal of Food Microbiology, 284, pp. 73-83.
  • Prevost, B., Goulet, M., Lucas, F. S., Joyeux, M., Moulin, L. y Wurtzer, S. (2016). Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes. Water Research, 91, pp. 68-76.
  • Randazzo, W., D’Souza, D. H. y Sanchez, G. (2018). Norovirus: The Burden of the Unknown. En Rodriguez-Lazaro, D. (ed.) Advances in Food and Nutrition Research (vol. 86). Academic Press, pp. 13-53.
  • Randazzo, W., Fabra, M. J., Falcó, I., López- Rubio, A. y Sánchez, G. (2018). Polymers and Biopolymers with Antiviral Activity: Potential Applications for Improving Food Safety. Comprehensive Reviews in Food Science and Food Safety, 17 (3), pp. 754-768.
  • Randazzo, W., Falcó, I., Aznar, R. y Sánchez, G. (2017). Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiology, 66, pp. 150-156.
  • Randazzo, W., Khezri, M., Ollivier, J., Le Guyader, F. S., Rodríguez-Díaz, J., Aznar, R. y Sánchez, G. (2018). Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 266, pp. 1-7.
  • Randazzo, W., Vasquez-García, A., Aznar, R. y Sánchez, G. (2018). Viability RT-qPCR to distinguish between HEV and HAV with intact and altered capsids. Frontiers in Microbiology, 9, 1973.
  • Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernandez Escamez, P. S. […] y Girones, R. (2017). Public health risks associated with hepatitis E virus (HEV) as a food‐borne pathogen. EFSA Journal, 15 (7), e04886.
  • Sánchez, G. (2015). Processing Strategies to Inactivate Hepatitis A Virus in Food Products: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 14 (6), pp. 771-784.
  • Sánchez, G., Elizaquível, P. y Aznar, R. (2012). Discrimination of Infectious Hepatitis A Viruses by Propidium Monoazide Real- Time RT-PCR. Food and Environmental Virology, 4 (1), pp. 21-25.
  • Varela, M. F., Monteiro, S., Rivadulla, E., Santos, R. y Romalde, J. L. (2018). Development of a novel digital RT-PCR method for detection of human sapovirus in different matrices. Journal of Virological Methods, 254, pp. 21-24.
  • Yang, Z., Mammel, M., Papafragkou, E., Hida, K., Elkins, C. A. y Kulka, M. (2017). Application of next generation sequencing toward sensitive detection of enteric viruses isolated from celery samples as an example of produce. International Journal of Food Microbiology, 261, pp. 73-81.
  • ISO 15216-1:2017. Microbiology of the Food Chain — Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-time RT-PCR — Part 1: Method for Quantification. [En línea]. Disponible en https://www.iso. org/obp/ui/#iso:std:iso:15216:-1:ed- 1:v1:en
  • World Health Organization. WHO estimates of the global burden of foodborne diseases. Foodborne diseases burden epidemiology reference group 2007– 2015. [En línea]. Disponible en https:// apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_ eng.pdf?sequence=1