Evaluación de la biodisponibilidad in vitro de compuestos bioactivos de arándanos

  1. Zampedri, Carolina Ayelen 1
  2. Zampedri, Patricia Andrea 1
  3. Scattolaro, Ornella 1
  4. Zapata, Luz Marina 1
  5. Castagnini, Juan Manuel 1
  1. 1 Facultad de Ciencias de la Alimentación. Universidad Nacional de Entre Ríos
Zeitschrift:
Ciencia, Docencia y Tecnología

ISSN: 1851-1716 0327-5566

Datum der Publikation: 2018

Jahr: 29

Nummer: 57

Seiten: 285-295

Art: Artikel

DOI: 10.33255/2957/320 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Ciencia, Docencia y Tecnología

Zusammenfassung

In vivo and in vitro studies have shown that blueberry anthocyanins exert beneficial biological effects on consumers health. In vitro methodology allows to evaluate the stability of the anthocyanins in relation to the interaction of the different components of the dietary matrices, the pH, the temperature, the presence of inhibitors or absorption enhancers and the presence of enzymes. The aims of this research were to develop a methodology of in vitro digestion and to evaluate the in vitro bioavailability of anthocyanins present in blueberry juice and in a snack formulated with blueberry juice and apple. The results indicate that, although there is a loss of anthocyanins during the digestive process, they are able to cross all the stages and reach the intestine, allowing controlled release of these antioxidants present in blueberry juice and the snack.

Bibliographische Referenzen

  • BASU, A., DU, M., LEYVA, M. J., SANCHEZ, K., BETTS, N. M., WU, M., … LYONS, T. J. (2010). Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome123. The Journal of Nutrition, 140(9), 1582–1587. https://doi.org/10.3945/jn.110.124701.chokeberries
  • BETORET, N., ANDRÉS, A., SEGUI, L., & FITO, P. (2007). Application of safes (systematic approach to food engineering systems) methodology to dehydration of apple by combined methods. Journal of Food Engineering, 83(2), 186–192. https://doi.org/10.1016/j.jfoodeng.2007.02.018
  • BLANQUET, S., ZEIJDNER, E., BEYSSAC, E., MEUNIER, J. P., DENIS, S., HAVENAAR, R., & ALRIC, M. (2004). A dynamic arificial gastrointestinal system for studying the behavior of orally administrated drug dosage forms under various physiological conditions. Pharmaceutical Research, 21(4), 585–591.
  • BOISEN, S., & EGGUM, B. O. (1991). Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutrition Research Reviews, 4(1), 141–162. https://doi.org/10.1079/NRR19910012
  • BOUAYED, J., HOFFMANN, L., & BOHN, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14–21. https://doi.org/10.1016/j.foodchem.2011.02.052
  • CASTAGNINI, J. M., ZAPATA, L. M., QUINTEROS, C. F., & NOCETI, A. (2017). Multiple response optimization of blueberry juice depectinization. Ciencia Rural, 47(4), 1–9. https://doi.org/10.1590/0103-8478cr20160501
  • COLES, L. T., MOUGHAN, P. J., & DARRAGH, A. J. (2005). In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Animal Feed Science and Technology, 123–124, P(0), 421–444. https://doi.org/http://dx.doi.org/10.1016/j.anifeedsci.2005.04.021
  • FLORES, F. P., SINGH, R. K., KERR, W. L., PEGG, R. B., & KONG, F. (2014). Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry, 153, 272–278. https://doi.org/10.1016/j.foodchem.2013.12.063
  • FLORES, G., RUIZ DEL CASTILLO, M. L., COSTABILE, A., KLEE, A., BIGETTI GUERGOLETTO, K., & GIBSON, G. R. (2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. https://doi.org/10.1016/j.jff.2015.04.022
  • FORESTER, S. C., & WATERHOUSE, A. L. (2010). Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of caco-2 cells. Journal of Agricultural and Food Chemistry, 58(9), 5320–5327. https://doi.org/10.1021/jf9040172
  • GIUSTI, M. M., & WROLSTAD, R. E. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry (pp. 1–13). John Wiley & Sons, Inc. https://doi.org/10.1002/0471142913.faf0102s00
  • HE, J., & GIUSTI, M. M. (2010). Anthocyanins: Natural Colorants with Health-Promoting Properties. Annual Review of Food Science and Technology, 1(1), 163–187. https://doi.org/10.1146/annurev.food.080708.100754
  • HIDALGO, M., ORUNA-CONCHA, M. J., WALTON, G. E., KALLITHRAKA, S., SPENCER, J. P. E., GIBSON, G. R., & PASCUAL-TERESA, S. DE. (2012). Metabolism of Anthocyanins by Human Gut Micro fl ora and Their In fl uence on Gut Bacterial Growth. Journal of Agricultural and Food Chemistry, 60, 3882–3890.
  • KALT, W., BLUMBERG, J. B., MCDONALD, J. E., VINQVIST-TYMCHUK, M. R., FILLMORE, S. A. E., GRAF, B. A., … MILBURY, P. E. (2008). Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry, 56(3), 705–712. https://doi.org/10.1021/jf071998l
  • KALT, W., MCDONALD, J. E., RICKER, R. D., & LU, X. (1999). Anthocyanin content and profile within and among blueberry species. Canadian Journal of Plant Science, 79(4), 617–623. https://doi.org/10.4141/P99-009
  • KAY, C. D., & HOLUB, B. J. (2002). The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. The British Journal of Nutrition, 88(4), 389–98. https://doi.org/10.1079/BJN2002665
  • LIANG, L., WU, X., ZHAO, T., ZHAO, J., LI, F., ZOU, Y., … YANG, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 46(1), 76–82. https://doi.org/10.1016/j.foodres.2011.11.024
  • MCANULTY, S. R., MCANULTY, L. S., MORROW, J. D., KHARDOUNI, D., SHOOTER, L., MONK, J., … BROWN, V. (2005). Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radical Research, 39(11), 1241–8. https://doi.org/10.1080/10715760500306836
  • MCDOUGALL, G. J., FYFFE, S., DOBSON, P., & STEWART, D. (2005). Anthocyanins from red cabbage – stability to simulated gastrointestinal digestion. Phytochemistry, 66, 2540–2548. https://doi.org/10.1016/j.phytochem.2007.02.004
  • MOGHE, S. S., JUMA, S., IMRHAN, V., & VIJAYAGOPAL, P. (2012). Effect of Blueberry Polyphenols on 3T3-F442A Preadipocyte Differentiation. Journal of Medicinal Food, 15(5), 448–452. https://doi.org/10.1089/jmf.2011.0234
  • MURUGAN, R., CHANDRAN, R., & PARIMELAZHAGAN, T. (2016). Effect of in vitro simulated gastrointestinal digestion of Phoenix loureirii on polyphenolics, antioxidant and acetylcholinesterase inhibitory activities. LWT - Food Science and Technology, 74, 363–370. https://doi.org/10.1016/j.lwt.2016.07.075
  • NOGUER, M., CEREZO, A. B., RENTZSCH, M., WINTERHALTER, P., TRONCOSO, A. M., & GARCÍA-PARRILLA, M. C. (2008). Simulated digestion and antioxidant activity of red wine fractions separated by high speed countercurrent chromatography. Journal of Agricultural and Food Chemistry, 56(19), 8879–8884. https://doi.org/10.1021/jf8007376
  • NORBERTO, S., SILVA, S., MEIRELES, M., FARIA, A., PINTADO, M., & CALHAU, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 1–11. https://doi.org/10.1016/j.jff.2013.08.015
  • OIDTMANN, J., SCHANTZ, M., MÄDER, K., BAUM, M., BERG, S., BETZ, M., … RICHLING, E. (2012). Preparation and comparative release characteristics of three anthocyanin encapsulation systems. Journal of Agricultural and Food Chemistry, 60(3), 844–851. https://doi.org/10.1021/jf2047515
  • SEERAM, N. P. (2008). Berry fruits for cancer prevention: Current status and future prospects. Journal of Agricultural and Food Chemistry, 56(3), 630–635. https://doi.org/10.1021/jf072504n
  • STEVENSON, D. E., COONEY, J. M., JENSEN, D. J., ZHANG, J., & WIBISONO, R. (2007). Comparison of the relative recovery of polyphenolics in two fruit extracts from a model of degradation during digestion and metabolism. Molecular Nutrition and Food Research, 51(8), 939–945. https://doi.org/10.1002/mnfr.200700087
  • STULL, A. J., CASH, K. C., JOHNSON, W. D., CHAMPAGNE, C. M., & CEFALU, W. T. (2010). Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women. Journal of Nutrition, 140(10), 1764–1768. https://doi.org/10.3945/jn.110.125336
  • TAGLIAZUCCHI, D., VERZELLONI, E., BERTOLINI, D., & CONTE, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599–606. https://doi.org/10.1016/j.foodchem.2009.10.030
  • VRHOVSEK, U., MASUERO, D., PALMIERI, L., & MATTIVI, F. (2012). Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis, 25(1), 9–16. https://doi.org/10.1016/j.jfca.2011.04.015
  • ZAFRA-STONE, S., YASMIN, T., BAGCHI, M., CHATTERJEE, A., VINSON, J. A., & BAGCHI, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research, 51(6), 675–683. https://doi.org/10.1002/mnfr.200700002