L'estimulació cerebral profunda al nucli accumbens i l'estudi pilot electrofisiològic d'escorça prefrontal medial, davant la resposta d'estrés

  1. Luque Garcia, Aina
  2. Teruel Martí, Vicent
  3. Cervera Ferri, Ana
  4. Martínez Bellver, Sergio
  5. Martínez Ricòs, Joana
Revista:
Anuari de psicologia de la Societat Valenciana de Psicologia

ISSN: 1135-1268

Año de publicación: 2013

Título del ejemplar: Monogràfic: Jove

Volumen: 15

Número: 2

Páginas: 209-236

Tipo: Artículo

Otras publicaciones en: Anuari de psicologia de la Societat Valenciana de Psicologia

Resumen

Aquest estudi es basa, conceptualment, en les investigacions relatives a l'estimulació cerebral profunda (ECP), que és una intervenció neuroqui- rúrgica en la que electrodes implantats alliberen impulsos electrics en zones «diana» de l'encefal. Aquesta tecnica ha estat emprada per a tractar diferents patologies, entre altres les addiccions i les seues manifestacions comporta- mentals. Específicament, l'ECP al nucli accumbens, ha estat aplicada per a tractar, amb èxit, els trastorns addictius i el desig del consum craving. Així mateix destaquem com durant el proces addictiu i, concretament, en el craving s'ha comprovat, que l'estrés juga un paper significatiu. D'altra banda, l'estudi electrofisiologic de l'escor,;a prefrontal medial i amígdala central és fonamental, per a l’obtenció de dades rellevants, en ambdues àrees involucrades, envers la gestió de l’estrés i les addiccions.

Referencias bibliográficas

  • Adhikari, A. (2014). Distributed circuits underlying anxiety. Frontiers in Be- havioral Neuroscience, 8 (April), 112. doi:10.3389/fnbeh.2014.00112.
  • Aznar, S. i Klein, A. B. (2013). Regulating prefrontal cortex activation: an emerging role for the 5-HT2A serotonin receptor in the modulation of emo- tion-based actions? Molecular Neurobiology, 48(3), 8418-53. doi:10.1007/s12035-013-8472-0.
  • Bagdy, E. i Ha, L. G. (2000). Neurochemical and electrophysiological studies on the functional significance of bust firing in serotenergic neurons, 98(2), 295-300.
  • Banaschewski, T. i Brandeis, D. (2007). Annotation: what electrical brain activ- ity tells us about brain function that other techniques cannot tell us a child psychiatric perspective. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(5), 415-435. doi:10.1111/j.1469-7610.2006.01681.x.
  • Basar, K.; Sesia, T.; Groenewegen, H.; Steinbusch, H. W. M.; Visser-Vande- walle, V. i Temel, Y. (2010). Nucleus accumbens and impulsivity. Progress in Neurobiology, 92(4), 533-557. doi:10.1016/j.pneurobio.2010.08.007.
  • Bechara, A. i Martin, E. M. (2004). Impaired decision making related to work- ing memory deficits in individuals with substance addictions. Neuropsy- chology, 18(1), 152-62.
  • Benabid, A. L. (2007). What the future holds for deep brain stimulation. Expert Rev Med Devices, 4, 895-903.
  • Brake, W.; Flores, G.; Francis, D.; Meaney, M.; Srivastava, L. i Gratton, A. (2000). Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the me- dial prefrontal cortex. Neuroscience, 96(4), 687-695. doi:10.1016/S0306- 4522(00)00002-6.
  • Breiter, H. C.; Gollub, R. L.; Weisskoff, R. M.; Kennedy, D. N.; Makris, N.; Berke, J. D.; Goodman, J. M.; Kantor, H. L.; Gastfriend, D. R.; Riorden, J. P.; Mathew, R. T.; Rosen, B. R. i Hyman, S. E. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron., 19(3), 591-611.
  • Brown, P.; Mazzone, P.; Oliviero, A.; Altibrandi, M. G.; Pilato, F.; Tonali, P. A. i Di Lazzaro, V. (2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Experimental Neurolo- gy, 188(2), 480-490. doi:10.1016/j.expneurol.2004.05.009.
  • Brown, R. G. i Pluck, G. (2000). Negative symptoms: the «pathology» of mo- tivation and goal-directed behaviour. Trends in Neurosciences, 23(9), 412-417. doi:10.1016/S0166-2236(00)01626-X.
  • Buzsáki, G. i Watson, B. O. (2012). Brain rhythms and neural syntax: Implica- tions for efficient coding of cognitive content and neuropsychiatric disease. Dialogues in Clinical Neuroscience, 14(4), 345-367.
  • Chen, X. L.; Xiong, Y. Y.; Xu, G. L. i Liu, X. F. (2013). Deep brain stimulation. Interventional Neurology, 1(3-4), 200-212. doi:10.1159/000353121.
  • Delaloye, S. i Holtzheimer, P. E. (2014). In the treatment of depression, 83-91. Deniau, J.-M.; Degos, B.; Bosch, C. i Maurice, N. (2010). Deep brain stimu- lation mechanisms: beyond the concept of local functional inhibition. The European Journal of Neuroscience, 32(7), 1080-1091. doi:10.1111/j.1460-9568.2010.07413.x.
  • Di Chiara, G. i Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A, 85(14), 5274-5278.
  • Egli, M. (2005). Can experimental paradigms and animal models be used to dis- cover clinically effective medications for alcoholism? Addict Biol., 10(4), 309-319. Review.
  • Euston, D. R.; Gruber, A. J. i Mcnaughton, B. L. (2013). NIH Public Access, 76(6), 1057-1070. doi:10.1016/j.neuron.2012.12.002.
  • Everitt, B. J. i Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci., 8(11), 1481-1489. Review. Erratum in: Nat Neurosci. (2006), 9(7), 979.
  • Ewing, S. G. i Grace, A. A. (2013). Long-term high frequency deep brain stim- ulation of the nucleus accumbens drives time-dependent changes in func- tional connectivity in the rodent limbic system. Brain Stimulation, 6(3), 274-285. doi:10.1016/j.brs.2012.07.007.
  • Feenstra, M. G. P.; Botterbiom, M. H. A. i Uum, J. F. M. Van (1998). Local Activation of Metabotropic Glutamate Receptors Inhibits the Handling-In- duced Increased Release of Dopamine in the Nucleus Accumbens but Not that of Dopamine or Noradrenaline in the Prefrontal Cortex: Comparison with Inhibition of lonotropic Recepto, 1104-1113.
  • Figueiredo, H. F.; Bruestle, A.; Bodie, B.; Dolgas, C. M. i Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-in- duced c-fos expression in the forebrain depending on type of stressor. Eu- ropean Journal of Neuroscience, 18(8), 2357-2364. doi:10.1046/j.1460- 9568.2003.02932.x.
  • Forster, G. L.; Feng, N.; Watt, M. J.; Korzan, W. J.; Mouw, N. J.; Summers, C. H. i Renner, K. J. (2006). Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior. Neuroscience, 141(2), 1047-1055. doi:10.1016/j. neuroscience.2006.04.006.
  • Forster, G. L.; Pringle, R. B.; Mouw, N. J.; Vuong, S. M.; Watt, M. J.; Burke, A. R.; ... Renner, K. J. (2008). Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 re- ceptors and median raphe nucleus activity. The European Journal of Neu- roscience, 28(2), 299-310. doi:10.1111/j.1460-9568.2008.06333.x.
  • George, O.; Koob, G. F. i Vendruscolo, L. F. (2014). Negative reinforcement via motivational withdrawal is the driving force behind the transition to ad- diction. Psychopharmacology, 231(19), 3911-3917. doi:10.1007/s00213-014-3623-1.
  • Gionfriddo, M. R.; Greenberg, A. J.; Wahegaonkar, A. L. i Lee, K. H. (2013). Pathways of Translation: Deep Brain Stimulation. Clinical and Transla- tional Science, 6(6), 497-501. doi:10.1111/cts.12055.
  • Goodman, W. K.; Foote, K. D.; Greenberg, B. D.; Ricciuti, N.; Bauer, R.; Ward, H.; ... Okun, M. S. (2010). Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biological Psychiatry, 67(6), 535-542. doi:10.1016/j.biopsych.2009.11.028.
  • Heilig, M.; Egli, M. (2006). Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther. 111(3), 855-876. Epub 2006 Mar 20. Review.
  • Henderson, M. B.; Green, A. I.; Bradford, P. S.; Chau, D. T.; Roberts, D. W. i Leiter, J. C. (2010). Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus., 29(2), E12. doi:10.3171/2010.4.FOCUS10105.
  • Jankord, R. i Herman, J. P. (2009). Author Manuscript Adrenocortical function during acute and cronic, 64-73. doi:10.1196/annals.1410.012.Limbic.
  • Holmes, A. i Wellman, C. L. (2009). Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neuroscience and Biobehavioral Re- views. doi:10.1016/j.neubiorev.2008.11.005.
  • Jones, K. R.; Myers, B. i Herman, J. P. (2011). Stimulation of the prelimbic cor- tex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. Physiology i Behavior, 104(2), 266-271. doi:10.1016/j. physbeh.2011.03.021.
  • Knapp, C. M.; Tozier, L.; Pak, A.; Ciraulo, D. A. i Kornetsky, C. (2009). Deep brain stimulation of the nucleus accumbens reduces etanol consumption in rats. Pharmacol Biochem Behav, 92, 474-479.
  • Koob, G. F. i Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsy- chopharmacology: Official Publication of the American College of Neu- ropsychopharmacology, 35(1), 217-238. doi:10.1038/npp.2009.110.
  • Koob, G. F. i Le Moal, M. (2006). Neurobiology of Addiction, Elsevier, pp.490.
  • Koob, G. F. i Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 29-53. doi:10.1146/annurev.psych.59.103006.093548.
  • Koob, G. F. i Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsy- chopharmacology: Official Publication of the American College of Neu- ropsychopharmacology, 35(1), 217-238. doi:10.1038/npp.2009.110.
  • Kuhn, J.; Lenartz, D.; Mai, J. K.; Huff, W.; Lee, S.-H.; Koulousakis, A.; Sturm, V. (2007). Deep brain stimulation of the nucleus accumbens and the in- ternal capsule in therapeutically refractory Tourette-syndrome. Journal of Neurology, 254(7), 963-965. doi:10.1007/s00415-006-0404-8.
  • Kuhn, J.; Gründler, T. O.; Bauer, R.; Huff, W.; Fischer, A. G.; Lenartz, D.; Maar- ouf, M.; Bührle, C.; Klosterkotter, J.; Ullsperger, M. i Sturm, V. (2011). Successful deep brain stimulation of the nucleus accumbens in severe al- cohol dependence is associated with changed performance monitoring. Ad- dict Biol., 16(4), 620-623. doi: 10.1111/j.1369-1600.2011.00337.x. Epub 2011 Jul 18.
  • Levy, D.; Shabat-Simon, M.; Shalev, U.; Barnea-Ygael, N.; Cooper, A.; Zan- gen, A. (2007). Repeated electrical stimulation of reward-related brain regions affects cocaine but not ‘natural’ reinforcement. J Neurosci, 27, 14179-14189.
  • Levy, R.; Deer, T. R. i Henderson, J. (2010). Intracranial neurostimulation for pain control: a review. Pain Physician, 13(2), 157-165.
  • Liu, H. Y.; Jin, J.; Tang, J. S.; Sun, W. X.; Jia, H.; Yang, X. P. et al. (2008). Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol, 13, 40-46.
  • Luigjes, J.; van den Brink, W.; Feenstra, M.; van den Munckhof, P.; Schuurman, P. R.; Schippers, R.; Mazaheri, A.; De Vries, T. J. i Denys, D. (2011). Mol Deep brain stimulation in addiction: a review of potential brain targets. Psychiatry, 20. doi: 10.1038/mp.2011.114. [Epub ahead of print].
  • Lukkes, J. L.; Forster, G. L.; Renner, K. J. i Summers, C. H. (2009). NIH Public Access, 578, 185-193.
  • Marshall, L.; Molle, M. i Born, J. (2003). Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential. Neuroscience, 121(4), 1047-1053. doi:10.1016/S0306-4522(03)00458-5.
  • Mascetti, L.; Muto, V.; Matarazzo, L.; Foret, A.; Ziegler, E.; Albouy, G.; ... Bal- teau, E. (2013). The impact of visual perceptual learning on sleep and local slow-wave initiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(8), 3323-3331. doi:10.1523/JNEUROS- CI.0763-12.2013.
  • Matochik, J. A.; London, E. D.; Eldreth, D. A.; Cadet, J. L. i Bolla, K. I. (2003). Frontal cortical tissue composition in abstinent cocaine abusers: a magnet- ic resonance imaging study. Neuroimage, 19(3), 1095-1102.
  • McClernon, F. J. (2009). Neuroimaging of Nicotine Dependence: Key Findings and Application to the Study of Smoking-Mental Illness Comorbidity. J Dual Diagn., 5(2), 168-178.
  • McCracken, C. B. i Grace, A. A. (2007). High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selec- tively modulates afferent drive in rat orbitofrontal cortex in vivo. The Jour- nal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(46), 12601-12610. doi:10.1523/JNEUROSCI.3750-07.2007.
  • Mccracken, C. B. i Grace, A. A. (2010). Nucleus accumbens deep brain stimula- tion produces region- specific alterations in local field potential oscillations and evoked responses in vivo. Psychiatry: Interpersonal and Biological Processes, 29(16), 5354-5363. doi:10.1523/JNEUROSCI.0131-09.2009. Nucleus.
  • Mcintyre, C. C. i Hahn, P. J. (2011). Network Perspectives on the Mechanisms of Deep Brain Stimulation, 38(3), 329-337. doi:10.1016/j.nbd.2009.09.022. Network.
  • McIntyre, C. C.; Savasta, M.; Kerkerian-Le Goff, L. i Vitek, J. L. (2004). Un- covering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clinical Neurophysiology: Official Journal of the ln- ternational Federation of Clinical Neurophysiology, 115(6), 1239-1248. doi:10.1016/j.clinph.2003.12.024.
  • Mcklveen, J. M.; Myers, B.; Flak, J. N.; Bundzikova, J.; Solomon, M. B.; Se- roogy, K. B. i Herman, J. P. (2014). NIH Public Access, 74(9), 672-679. doi:10.1016/j.biopsych.2013.03.024.Role.
  • Mora, F.; Segovia, G.; Del Arco, A.; de Blas, M. i Garrido, P. (2012). Stress, neurotransmitters, corticosterone and body-brain integration. Brain Research 1476, 71-85. doi:10.1016/j.brainres.2011.12.049.
  • Morse, R. M. i Flavin, D. K. (1992). The definition of alcoholism. The Joint Committee of the National Council on Alcoholism and Drug Dependence and the American Society of Addiction Medicine to Study the Definition and Criteria for the Diagnosis of Alcoholism. Source JAMA, 268(8), 1012- 1014.
  • O'Brien, C. P. i McLellan, A. T. (2002). Have we evaluated addiction treatment correctly? Implications from a chronic care perspective. Addiction, 97, 249-252.14. Myths about the treatment of addiction. Lancet (1996) 347, 237-240.
  • Palomares-Castillo, E.; Hernández-Pérez, O. R.; Pérez-Carrera, D.; Crespo- Ramírez, M., Fuxe, K. i Pérez de la Mora, M. (2012). The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Research, 1476, 211-234. doi:10.1016/j. brainres.2012.03.047.
  • Pardo, J. V.; Pardo, P. J.; Janer, K. W. i Raichle, M. E. (1990). The anterior cin- gulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A., 87(1), 256-259.
  • Pascucci, T.; Ventura, R.; Latagliata, E. C.; Cabib, S. i Puglisi-Allegra, S. (2007). The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. Cerebral Cortex (New York, N.Y.: 1991), 17(12), 2796-2804. doi:10.1093/cercor/bhm008.
  • Pérez Egea, R. (2010). Estimulación cerebral profunda: posibles aplicaciones en los trastornos adictivos. Trastornos Adictivos, 12(4), 144-147. doi:10.1016/ S1575-0973(10)70028-3.
  • Pierce, R. C. i Vassoler, F. M. (2013). Deep brain stimulation for the treatment of addiction: Basic and clinical studies and potential mechanisms of action. Psychopharmacology. doi:10.1007/s00213-013-3214-6.
  • Puig, M. V.; Ushimaru, M. i Kawaguchi, Y. (2008). Two distinct activity pat- terns of fast-spiking interneurons during neocortical UP states. Proceedings of the National Academy of Sciences, 105(24), 8428-8433. doi:10.1073/ pnas.0712219105.
  • Quirk, G. J.; Likhtik, E.; Pelletier, J. G. i Pare, D. (2003). Stimulation of Medial Prefrontal Cortex Decreases the Responsiveness of Central Amygdala Out- put Neurons, 23(25), 8800-8807.
  • Radley, J. J.; Arias, C. M. i Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(50), 12967-12976. doi:10.1523/JNEUROS- CI.4297-06.2006.
  • Rainville, P.; Duncan, G. H.; Price, D. D.; Carrier, B.; Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968-971.
  • Risinger, R. C.; Salmeron, B. J.; Ross, T. J.; Amen, S. L.; Sanfilipo, M.; Hoff- mann, R. G.; Bloom, A. S.; Garavan, H. i Stein, E. A. (2005). Neural cor- relates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage, 26(4), 1097-1108.
  • Robbins, T. W.; Everitt, B. J. i Nutt, D. J. (2008). Introduction. The neurobi- ology of drug addiction: new vistas. Philos Trans R Soc Lond B Biol Sci., 363(1507), 3109-
  • Robinson, T. E. i Berridge K. C. (1993). The neural basis of drug craving: an in- centive-sensitization theory of addiction. Brain Res Brain Res Rev., 18(3), 247-291. Review.
  • Schlaepfer, T. E.; Cohen, M. X.; Frick, C.; Kosel, M.; Brodesser, D.; Axmacher, N.; ... Sturm, V. (2008). Deep brain stimulation to reward circuitry allevi- ates anhedonia in refractory major depression. Neuropsychopharmacolo- gy: Official Publication of the American College of Neuropsychopharma- cology, 33(2), 368-377. doi:10.1038/sj.npp.1301408.
  • Schmidt, H. D. i Pierce, R. C. (2010). Cocaine-induced neuroadaptations in glu- tamate transmission: potential therapeutic targets for craving and addiction. Annals of the New York Academy of Sciences, 1187, 35-75. doi:10.1111/ j.1749-6632.2009.05144.x.
  • Schmuckermair, C.; Gaburro, S.; Sah, A.; Landgraf, R.; Sartori, S. B. i Sin- gewald, N. (2013). Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety– and depression-like be- havior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(7), 1234-1244. doi:10.1038/ npp.2013.21.
  • Sejnowski, T. J. i Destexhe, A. (2000). Why do we sleep? Brain Research, 886(1-2), 208-223. doi:10.1016/S0006-8993(00)03007-9.
  • Sell, L. A.; Morris, J. S.; Bearn, J.; Frackowiak, R. S.; Friston, K. J.; Dolan, R. J. (2000). Drug Alcohol Depend., 60(2), 207-216. Neural responses.
  • Sidtis, J. J.; Tagliati, M.; Alterman, R.; Sidtis, D.; Dhawan, V. i Eidelberg, D. (2012). Therapeutic high-frequency stimulation of the subthalamic nucleus in Parkinson's disease produces global increases in cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 32(1), 41-49. doi:10.1038/jcbfm.2011.135.
  • Stevenson, C. W. i Gratton, A. (2003). Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. European Journal of Neuroscience, 17(6), 1287-1295. doi:10.1046/j.1460-9568.2003.02560.x.
  • Titular, P., i Alemany, R. N. (2008). La búsqueda de sensaciones y su relación con la vulnerabilidad a la adicción y al estrés, 59-72.
  • Tye, K. M.; Prakash, R.; Kim, S.; Fenno, L. E.; Grosenick, L.; Zarabi, H. i Rama- krishnan, C. (2011). Control of anxiety, 471(7338), 358-362. doi:10.1038/ nature09820.Amygdala.
  • Ulrich-Lai, Y. M. i Herman, J. P. (2009). Neural regulation of endocrine and au- tonomic stress responses. Nature Reviews. Neuroscience, 10(6), 397-409. doi:10.1038/nrn2647.
  • Van der Stelt, O. i Belger, A. (2007). Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophrenia Bulletin, 33(4), 955-970. doi:10.1093/schbul/sbm016.
  • Van Dijk, A.; Klompmakers, A. A.; Feenstra, M. G. P. i Denys, D. (2012). Deep brain stimulation of the accumbens increases dopamine, serotonin, and no- radrenaline in the prefrontal cortex. Journal of Neurochemistry, 123(6), 897-903. doi:10.1111/jnc.12054.
  • Vassoler, F. M.; Schmidt, H. D.; Gerard, M. E.; Famous, K. R.; Ciraulo, D. A.;
  • Kornetsky, C. i Pierce, R. C. (2008). Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(35), 8735-8739. doi:10.1523/JNEUROS- CI.5277-07.2008.
  • Vengeliene, V.; Bilbao, A.; Molander, A. i Spanagel, R. (2008). Neuropharma- cology of alcohol addiction. Br J Pharmacol., 154(2), 299-315.
  • Verdejo-García A. i Pérez-García, M. (2007). Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology (Berl), 190(4), 517-30. Epub 2006 Nov 29.
  • Volkow, N. D. (2005). The Neural Basis of Addiction: A Pathology of Motiva- tion and Choice, (August), 1403-1413.
  • Wallenhorst, T. (2010). La dependencia del alcohol. Un camino de crecimiento. Bilbao. Ed. Desclée De Brouwer, S.A.
  • Wichmann, T. i DeLong, M. R. (2011). Deep-brain stimulation for basal ganglia disorders. Basal Ganglia. doi:10.1016/j.baga.2011.05.001.
  • Wise, R. A. (1987). The role of reward pathways in the development of drug dependence. Pharmacol Ther., 35(1-2), 227-263. Review.
  • Weisstaub, N. V.; Zhou, M.; Lira, A.; Lambe, E.; González-Maeso, J.; Hornung, J.-P. i Gingrich, J. A. (2006). Cortical 5-HT2A receptor signaling modu- lates anxiety-like behaviors in mice. Science (New York, N.Y.), 313(5786), 536-540. doi:10.1126/science.1123432.
  • Zhang, X.; Wang, Y.-T.; Wang, Y.; Jung, T. P.; Huang, M.; Cheng, C. K. i Mandell, A. J. (2015). Ultra-slow frequency bands reflecting potential coherence between neocortical brain regions. Neuroscience, 289, 71-84. doi:10.1016/j.neuroscience.2014.12.050.
  • Zhou, H.; Xu, J. i Jiang, J. (2011). Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry, 69, e41–e42