Eliminating self-reference from Grelling's and Zwicker's paradoxes

  1. Martínez Fernández, José
  2. Valor Abad, Jordi
Revista:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Año de publicación: 2014

Volumen: 29

Número: 79

Páginas: 85-97

Tipo: Artículo

DOI: 10.1387/THEORIA.6397 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Theoria: an international journal for theory, history and foundations of science

Objetivos de desarrollo sostenible

Resumen

El objetivo de este artículo es ofrecer versiones de las paradojas de Grelling (sobre el predicado "heterológico") y de Zwicker (sobre el hiperjuego) inspiradas en la paradoja de Yablo. Nuestras versiones de estas paradojas no parecen involucrar ni autorreferencia ni circularidad viciosa.

Referencias bibliográficas

  • Barwise, J. and Moss, L. 1996. Vicious Circles. On the Mathematics of Non-Wellfounded Phenomena. Stanford: CSLI Publications.
  • Beall, JC. 1999. Completing Sorensen's menu: a non-modal Yabloesque Curry. Mind 108: 737-39.
  • Beall, JC. 2001. Is Yablo's paradox non-circular? Analysis 61: 176-87.
  • Bueno, O. and M. Colyvan. 2003. Paradox without satisfaction. Analysis 63: 152-56.
  • Cook, R. 2004. Patterns of Paradox. Journal of Symbolic Logic 69(3): 767-774.
  • Goldstein, L. 1994. A Yabloesque paradox in set theory. Analysis 54: 223-27.
  • Ketland, J. 2004. Bueno and Colyvan on Yablo's paradox. Analysis 64: 165-72.
  • Ketland, J. 2005. Yablo's paradox and ω-inconsistency. Synthese 145: 295-302.
  • Leitgeb, H. 2002. What is a self-referential sentence? Critical remarks on the alleged (non-)circularity of Yablo's paradox. Logique & Analyse 177-178: 3-14.
  • Priest, G. 1994. The Structure of the Paradoxes of Self-Reference. Mind 103: 25-34.
  • Priest, G. 1997. Yablo's paradox. Analysis 57: 236-42.
  • Priest, G. 2002 (2nd edition). Beyond the Limits of Thought. Oxford: Oxford University Press.
  • Russell, B. 1905. On Some Difficulties in the Theory of Transfinite Numbers and Order Types. Proceedings of the London Mathematical Society, (series 2) 4: 29-53. Reprinted in D. Lackey, ed. Essays in Analysis. London: Allen and Unwin, 1973.
  • Russell, B. 1956. Mathematical Logic as based on the Theory of Types. In Logic and Knowledge, edited by R. Ch. Marsh, 59-102. London: Allen & Unwin. Originally published in American Journal of Mathematics 30 (1908): 222-62.
  • Schlenker, P. 2007a. The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth. Journal of Philosophical Logic 36: 251-307.
  • Schlenker, P.. 2007b. How to eliminate self-reference: a précis. Synthese 158: 127-38.
  • Sorensen, R. 1998. Yablo's paradox and kindred infinite liars. Mind 107: 137-55.
  • Urbaniak, R. 2009. Leitgeb, "about," Yablo. Logique & Analyse 207: 239-254.
  • Uzquiano, G. 2004. An infinitary paradox of denotation. Analysis 64: 128-31.
  • Valor Abad, J. 2008. The Inclosure Scheme and the Solution of the Paradoxes of Self-Reference. Synthese 160: 183-202.
  • Yablo, S. 1993. Paradox without self-reference. Analysis 53: 251-52.
  • Zwicker, W. 1987. Playing Games with Games: The Hypergame Paradox. The American Mathematical Monthly 94: 507-514.