Multiscale soil moisture retrievals from microwave remote sensing observations

  1. Piles, Maria
Dirigée par:
  1. Adriano José Camps Carmona Directeur/trice

Université de défendre: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 16 juillet 2010

Jury:
  1. Ignasi Corbella Sanahuja President
  2. María Nilda Sánchez Martín Secrétaire
  3. Juan Antonio Sobrino Rapporteur
  4. Thomas J. Schmugge Rapporteur
  5. Susanne Mecklenburg Rapporteur

Type: Thèses

Teseo: 111387 DIALNET lock_openTDX editor

Résumé

La humedad del suelo es la variable que regula los intercambios de agua, energía, y carbono entre la tierra y la atmósfera. Mediciones precisas de humedad son necesarias para una gestión sostenible de los recursos hídricos, para mejorar las predicciones meteorológicas y climáticas, y para la detección y monitorización de sequías e inundaciones. Esta tesis se centra en la medición de la humedad superficial de la Tierra desde el espacio, a escalas global y regional. Estudios teóricos y experimentales han demostrado que la teledetección pasiva de microondas en banda L es optima para la medición de humedad del suelo, debido a que la atmósfera es transparente a estas frecuencias, y a la relación directa de la emisividad del suelo con su contenido de agua. Sin embargo, el uso de la teledetección pasiva en banda L ha sido cuestionado en las últimas décadas, pues para conseguir la resolución temporal y espacial requeridas, un radiómetro convencional necesitaría una gran antena rotatoria, difícil de implementar en un satélite. Actualmente, hay tres principales propuestas para abordar este problema: (i) el uso de un radiómetro de apertura sintética, que es la solución implementada en la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, en órbita desde noviembre del 2009; (ii) el uso de un radiómetro ligero de grandes dimensiones y un rádar operando en banda L, que es la solución que ha adoptado la misión Soil Moisture Active Passive (SMAP) de la NASA, con lanzamiento previsto en 2014; (iii) el desarrollo de técnicas de desagregación de píxel que permitan mejorar la resolución espacial de las observaciones. La primera parte de la tesis se centra en el estudio del algoritmo de recuperación de humedad del suelo a partir de datos SMOS, que es esencial para obtener estimaciones de humedad con alta precisión. Se analizan diferentes configuraciones con datos simulados, considerando (i) la opción de añadir información a priori de los parámetros que dominan la emisión del suelo en banda L —humedad, rugosidad, temperatura del suelo, albedo y opacidad de la vegetación— con diferentes incertidumbres asociadas, y (ii) el uso de la polarización vertical y horizontal por separado, o del primer parámetro de Stokes. Se propone una configuración de recuperación de humedad óptima para SMOS. La resolución espacial de los radiómetros de SMOS y SMAP (40-50 km) es adecuada para aplicaciones globales, pero limita la aplicación de los datos en estudios regionales, donde se requiere una resolución de 1-10 km. La segunda parte de esta tesis contiene tres novedosas propuestas de mejora de resolución espacial de estos datos: • Se ha desarrollado un algoritmo basado en la deconvolución de los datos SMOS que permite mejorar la resolución espacial de las medidas. Los resultados de su aplicación a datos simulados y a datos obtenidos con un radiómetro aerotransportado muestran que es posible mejorar el producto de resolución espacial y resolución radiométrica de los datos. • Se presenta un algoritmo para mejorar la resolución espacial de las estimaciones de humedad de SMOS utilizando datos MODIS en el visible/infrarrojo. Los resultados de su aplicación a algunas de las primeras imágenes de SMOS indican que la variabilidad espacial de la humedad del suelo se puede capturar a 32, 16 y 8 km. • Un algoritmo basado en detección de cambios para combinar los datos del radiómetro y el rádar de SMAP en un producto de humedad a 10 km ha sido desarrollado y validado utilizando datos simulados y datos experimentales aerotransportados. Este trabajo se ha desarrollado en el marco de las actividades preparatorias de SMOS y SMAP, los dos primeros satélites dedicados a la monitorización de la variación temporal y espacial de la humedad de la Tierra. Los resultados presentados contribuyen a la obtención de estimaciones de humedad del suelo con la precisión y la resolución espacial necesarias para un mejor conocimiento del ciclo del agua y una mejor gestión de los recursos hídricos.