El análisis cuantitativo de trayectorias laborales. Un estado del arte
- Carbonell Asins, Juan Antonio 1
- Simó Noguera , Carles Xavier
- 1 Unidad de Bioinformática y Bioestadística. Instituto de investigación sanitaria
ISSN: 0210-2862, 2013-9004
Año de publicación: 2022
Volumen: 107
Número: 4
Tipo: Artículo
Otras publicaciones en: Papers: revista de sociología
Resumen
La metodología cuantitativa aplicada al estudio de las trayectorias laborales ha experimentado un rápido auge que se ha extendido más allá del tradicional análisis de secuencias. El presente artículo es un estado del arte del desarrollo de nuevas técnicas estadísticas que pueden aplicarse o ya se aplican al estudio de trayectorias laborales. Además, incluimos sugerencias de software estadístico para la aplicación de cada una de las técnicas descritas. A lo largo de todo el texto, podrá observarse que la descripción de cada técnica se ha realizado desde un punto de vista conceptual, con el objetivo de llegar a un público amplio, que no necesite poseer una fuerte formación estadística. Es mediante esta visión general que mostraremos las debilidades y fortalezas que cada técnica presenta, así como el hilo conductor que nos lleva de una a otra. Este trabajo parte de una perspectiva global en el estudio de las trayectorias laborales que luego tiende hacia una perspectiva más compleja, en que el interés se centra en una pequeña parte de dichas trayectorias o incluso de simples cambios de estado. La creciente complejidad de los modelos desarrollados será objeto de discusión final debido a los nuevos retos que presentan su aplicación e implementación. Es en este contexto donde argumentaremos la necesidad de un perfil estadístico en el marco de los proyectos de investigación, tal y como sucede en otras áreas científicas. Finalmente, debatiremos la utilidad de la estadística bayesiana a la hora de enfrentarse a modelización compleja.
Referencias bibliográficas
- Abbott, A. (1983). «Sequences of social events: Concepts and methods for the analysis of order in social processes». Historical Methods: A Journal of Quantitative and Interdisciplinary History, 16 (4), 129-147. https://doi.org/10.1080/01615440.1983.10594107
- Abbott, A. y Forrest, J. (1986). «Optimal matching methods for historical sequences». The Journal of Interdisciplinary History, 16 (3), 471-494. https://doi.org/10.2307/204500
- Aisenbrey, S. y Fasang, A. E. (2010). «New Life for Old Ideas: The “Second Wave” of Sequence Analysis Bringing the “Course” Back Into the Life Course. Sociological Methods & Research, 38 (3), 420-462. https://doi.org/10.1177/0049124109357532
- Auer, P. y Cazes, S. (2000). «The resilience of the Long-Term Employment Relationship: Evidence from the Industrialized Countries». International Labour Review, 139 (4), 379-408. https://doi.org/10.1111/j.1564-913X.2000.tb00525.x
- Bachmann, R. y Felder, R. (2018). «Job stability in Europe over the cycle». International Labour Review, 157 (3), 481-518. https://doi.org/10.1111/ilr.12117
- Barban, N. y Billari, F. C. (2012). «Classifying life course trajectories: a comparison of latent class and sequence analysis». Journal of the Royal Statistical Society: Series C (Applied Statistics), 61 (5), 765-784. https://doi.org/10.1111/j.1467-9876.2012.01047.x
- Bartholomew, D. J. (2001). «Factor analysis and latent structure: Overview». In: Smelser, Neil J., Baltes Paul B. International Encyclopedia of the Social & Behavioral Sciences, Pergamon, 5249-5254. https://doi.org/10.1016/B0-08-043076-7/00425-3
- Ben Bolker and R Development Core Team (2022). «bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.25».
- Bernardi, L.; Huinink, J. y Settersten, R. A. (2019). «The life course cube: A tool for studying lives». Advances in Life Course Research, 41, 100258. https://doi.org/10.1016/J.ALCR.2018.11.004
- Billari, F. C. y Piccarreta, R. (2005). «Analyzing demographic life courses through sequence analysis». Mathematical Population Studies, 12 (2), 81-106. https://doi.org/10.1080/08898480590932287
- Bolano, D.; Berchtold, A. y Ritschard, G. (2016). «A discussion on hidden Markov models for life course data». Sequence Analysis and Related Methods (LaCOSA II), 241.
- Bonetti, M.; Piccarreta, R. y Salford, G. (2013). «Parametric and nonparametric analysis of life courses: An application to family formation patterns». Demography, 50 (3), 881-902. https://doi.org/10.1007/s13524-012-0191-z
- Boswell, W. R. y Gardner, R. G. (2018). «Employed Job Seekers and Job-to-Job Search». The Oxford Handbook of Job Loss and Job Search, 401.
- Box, G. E. P. (1976). «Science and statistics». Journal of the American Statistical Association, 71 (356), 791-799. https://doi.org/10.1080/01621459.1976.10480949
- Brzinsky-Fay, C. (2007). «Lost in transition? Labour market entry sequences of school leavers in Europe». European Sociological Review, 23 (4), 409-422. https://doi.org/10.1093/esr/jcm011
- Bürgin, R. y Ritschard, G. (2014). «A decorated parallel coordinate plot for categorical longitudinal data». The American Statistician, 68 (2), 98-103. https://doi.org/10.1080/00031305.2014.887591
- Bustillo Llorente, R. M. de (2002). «Mercado de trabajo y exclusión social». Acciones e Investigaciones Sociales, 16, 89-124. https://doi.org/10.26754/ojs_ais/ais.200216236
- Denworth, L. (2019). «A significant problem». Scientific American, 321 (4), 62-67.
- Elzinga, C. H. y Liefbroer, A. C. (2007). «De-standardization of family-life trajectories of young adults: A cross-national comparison using sequence analysis». European Journal of Population/Revue Européenne de Démographie, 23 (3-4), 225-250. https://doi.org/10.1007/s10680-007-9133-7
- Fallick, Bruce; Haltiwanger, John; McEntarfer, Erika and Staiger, Matthew (2019). «Job-to-Job Flows and the Consequences of Job Separations». Federal Reserve Bank of Cleveland, Working Paper no. 19-27. https://doi.org/10.26509/frbc-wp-201927
- Fine, J. P. y Gray, R. J. (1999). «A Proportional Hazards Model for the Subdistribution of a Competing Risk». Journal of the American Statistical Association, 94 (446), 496-509. https://doi.org/10.1080/01621459.1999.10474144
- Gabadinho, A.; Ritschard, G.; Müller, N. S. y Studer, M. (2011). «Analyzing and Visualizing State Sequences in R with TraMineR». Journal of Statistical Software, 40 (4), 1-37. https://doi.org/10.18637/jss.v040.i04
- Ghahramani, Z. (2001). «An introduction to hidden Markov models and Bayesian networks». In: Bunke, Horst and Caelli, Terry. Hidden Markov models: applications in computer vision, 9-41. https://doi.org/10.1142/9789812797605_0002
- Gauthier, J.-A.; Widmer, E. D.; Bucher, P. y Notredame, C. (2009). «How much does it cost? Optimization of costs in sequence analysis of social science data». Sociological Methods & Research, 38 (1), 197-231. https://doi.org/10.1177/0049124109342065
- Gay, D. M. (1990). «Usage summary for selected optimization routines». Computing Science Technical Report, 153 (153), 1-21.
- Gelfand, A. E. y Smith, A. F. M. (1990). «Sampling-Based Approaches to Calculating Marginal Densities». Journal of the American Statistical Association, 85 (410), 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Gelfand, A. E.; Hills, S. E.; Racine-Poon, A. y Smith, A. F. M. (1990). «Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling». Journal of the American Statistical Association, 85 (412), 972-985. https://doi.org/10.1080/01621459.1990.10474968
- Halpin, B. (2016). «Missingness and truncation in sequence data: A non-self-identical missing state». Sequence Analysis and Related Methods (LaCOSA II), 443.
- Han, Y.; Liefbroer, A. C. y Elzinga, C. H. (2016). «Understanding social-class differences in the transition to adulthood using Markov chain models». En: Proceedings of the international conference on sequence analysis and related methods, 155-177.
- Helske, S. y Helske, J. (2019). «Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R». Journal of Statistical Software, 88 (3), 1-32. https://doi.org/10.18637/jss.v088.i03
- Helske, S.; Helske, J. y Eerola, M. (2016). «Analysing complex life sequence data with hidden Markov modelling». LaCOSA II: Proceedings of the International Conference on Sequence Analysis and Related Methods.
- Jimeno, J. y Toharia, L. (1994). Unemployment and labour market flexibility: Spain. International Labour Organization.
- Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press. https://doi.org/10.2307/j.ctvcm4gk0
- Kohler, U. y Brzinsky-Fay, C. (2005). «Stata tip 25: sequence index plots». Stata Journal, 5 (199-2016-2533), 601-602. https://doi.org/10.1177/1536867X0500500410
- Kruskal, J. B. (1983). «An overview of sequence comparison: Time warps, string edits, and macromolecules». SIAM Review, 25 (2), 201-237. https://doi.org/10.1137/1025045
- Lazarsfeld, P. F. y Henry, N. W. (1968). Latent structure analysis. Houghton Mifflin.
- Lesnard, L. (2010). «Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns». Sociological Methods & Research, 38 (3), 389-419. https://doi.org/10.1177/0049124110362526
- Levenshtein, V. I. (1966). «Binary codes capable of correcting deletions, insertions, and reversals». Soviet Physics Doklady, 10 (8), 707-710.
- Levine, J. H. (2000). «But what have you done for us lately? Commentary on Abbott and Tsay». Sociological Methods & Research, 29 (1), 34-40. https://doi.org/10.1177/0049124100029001002
- López-Andreu, M. y Verd, J. M. (2016). «Employment instability and economic crisis in Spain: what are the elements that make a difference in the trajectories of younger adults?». European Societies, 18 (4), 315-335. https://doi.org/10.1080/14616696.2016.1207791
- Lunn, D. J.; Thomas, A.; Best, N. y Spiegelhalter, D. (2000). «WinBUGS – A Bayesian Modelling Framework: Concepts, Structure, and Extensibility». Statistics and Computing, 10 (4), 325-337. https://doi.org/10.1023/A:1008929526011
- Matlab (2019). «Version 9.7 (R2019b)». The MathWorks Inc.
- Nelder, J. A. y Mead, R. (1965). «A simplex method for function minimization». The Computer Journal, 7, 308-313. https://doi.org/10.1093/comjnl/7.4.308
- Piccarreta, R. (2017). «Joint sequence analysis: Association and clustering». Sociological Methods & Research, 46 (2), 252-287. https://doi.org/10.1177/0049124115591013
- Piccarreta, R. y Matthias, S. (2019). «Holistic analysis of the life course: Methodological challenges and new perspectives». Advances in Life Course Research, 41, 100251. https://doi.org/10.1016/j.alcr.2018.10.004
- Plummer, M. et al. (2003). «JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling». Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 124 (125.10), 1-10.
- Pol, F. de y Langeheine, R. (1990). «Mixed Markov latent class models». Sociological Methodology, 213-247. https://doi.org/10.2307/271087
- Prentice, R. L.; Kalbfleisch, J. D.; Peterson, A. V.; Flournoy, N.; Farewell, V. T. y Breslow, N. E. (1978). «The analysis of failure times in the presence of competing risks». Biometrics, 34 (4), 541-554. https://doi.org/10.2307/2530374
- R Core Team (2019). R: A Language and Environment for Statistical Computing. https://www.R-project.org/
- Rossignon, F.; Studer, M.; Gauthier, J. A. y Le Goff, J. M. (2018). «Sequence history analysis (SHA): Estimating the effect of past trajectories on an upcoming event». En: Ritschard, G. y Studer, M. (eds). Sequence Analysis and Related Approaches. Life Course Research and Social Policies, 10. Cham: Springer. https://doi.org/10.1007/978-3-319-95420-2_6
- Rue, H.; Martino, S. y Chopin, N. (2009). «Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations». Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71 (2), 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
- Santonja, F. J.; Tarazona, A. C., & Villanueva, R. J. (2008). «A mathematical model of the pressure of an extreme ideology on a society». Computers & Mathematics with Applications, 56 (3), 836-846. https://doi.org/10.1016/j.camwa.2008.01.001
- Scherer, S. (2001). «Early career patterns: A comparison of Great Britain and West Germany». European Sociological Review, 17 (2), 119-144. https://doi.org/10.1093/esr/17.2.119
- Scott, S. L. (2002). «Bayesian methods for hidden Markov models: Recursive computing in the 21st century». Journal of the American statistical Association, 97(457), 337-351. https://doi.org/10.1198/016214502753479464
- Simó, C.; Bonmatí, A. y Golsch, K. (2006). «Globalization and men’s mid-career occupational mobility in Spain». En: Globalization, Uncertainty and Men’s Careers: An International Comparison.
- Studer, M.; Liefbroer, A. C. y Mooyaart, J. (2017). «Understanding Trends in the Transition to Adulthood: An Application of Competing Trajectories Analysis». PAA 2017 Annual Meeting.
- Studer, M.; Struffolino, E. y Fasang, A. E. (2018). «Estimating the relationship between time-varying covariates and trajectories: The sequence analysis multistate model procedure». Sociological Methodology, 48 (1), 103-135. https://doi.org/10.1177/0081175017747122
- Sturtz, S.; Ligges, U. y Gelman, A. (2005). «R2WinBUGS: A Package for Running WinBUGS from R». Journal of Statistical Software, 12 (3), 1-16. https://doi.org/10.18637/jss.v012.i03
- Su, Y. S. y Yajima, Masanao (2020). R2jags: Using R to Run “JAGS.” https://CRAN.R-project.org/package=R2jags
- Therneau, T. (2021). «A Package for Survival Analysis in R». https://CRAN.R-project.org/package=survival
- Therneau, T.; Crowson, C. & Atkinson, E. (2020). Multi-state models and competing risks. CRAN-R
- Verd, J. M.; Barranco, O. y Bolíbar, M. (2019). «Youth unemployment and employment trajectories in Spain during the Great Recession: what are the determinants?». Journal for Labour Market Research, 53 (1), 4. https://doi.org/10.1186/s12651-019-0254-3
- Vermunt, J. K. (2008). «Latent class and finite mixture models for multilevel data sets». Statistical Methods in Medical Research, 17 (1), 33-51. https://doi.org/10.1177/0962280207081238
- Visser, Ingmar y Speekenbrink, Maarten (2010). «depmixS4: An R Package for Hidden Markov Models». Journal of Statistical Software, 36 (7), 1-21. https://doi.org/10.18637/jss.v036.i07
- Wasserstein, R. L.; Schirm, A. L. y Lazar, N. A. (2019). «Moving to a World Beyond “p 0.05”». American Statistician, 73 (sup1.), 1-19. https://doi.org/10.1080/00031305.2019.1583913
- Wu, L. L. (2000). «Some comments on “Sequence analysis and optimal matching methods in sociology: Review and prospect”». Sociological Methods & Research, 29 (1), 41-64. https://doi.org/10.1177/0049124100029001003