Gelfand-type problems involving the 1-Laplacian operator

  1. Molino, Alexis
  2. Segura de León, Sergio
Revista:
Publicacions matematiques

ISSN: 0214-1493

Año de publicación: 2022

Volumen: 66

Número: 1

Páginas: 269-304

Tipo: Artículo

Otras publicaciones en: Publicacions matematiques

Resumen

In this paper, the theory of Gelfand problems is adapted to the 1-Laplacian setting. Concretely, we deal with the following problem: −∆1u = λf(u) in Ω,u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 1) is a domain, λ ≥ 0, and f : [0, +∞[ → ]0, +∞[ is any continuous increasing and unbounded function with f(0) > 0. We prove the existence of a threshold λ∗ = h(Ω) f(0) (h(Ω) being the Cheeger constant of Ω) such that there exists no solution when λ > λ∗ and the trivial function is always a solution when λ ≤ λ∗. The radial case is analyzed in more detail, showing the existence of multiple (even singular) solutions as well as the behavior of solutions to problems involving the p-Laplacian as p tends to 1, which allows us to identify proper solutions  through an extra condition.

Referencias bibliográficas

  • B. Abdellaoui, A. Dall’Aglio, and S. Segura de Leon´ , Multiplicity of solutions to elliptic problems involving the 1-Laplacian with a critical gradient term, Adv. Nonlinear Stud. 17(2) (2017), 333–353. DOI: 10.1515/ans-2017-0011.
  • A. Alvino, A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112 (1978).
  • L. Ambrosio, N. Fusco, and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. DOI: 10.1017/ S0024609301309281.
  • F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow, C. R. Acad. Sci. Paris Sér. I Math. 331(11) (2000), 867–872. DOI: 10.1016/S0764-4442(00)01729-8.
  • F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón , The Dirichlet problem for the total variation flow, J. Funct. Anal. 180(2) (2001), 347–403. DOI: 10.1006/jfan.2000.3698.
  • G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl .(4) 135 (1983), 293–318. DOI: 10. 1007/BF01781073.
  • D. Arcoya, J. Carmona, and P. J. Martínez-Aparicio, Gelfand type quasilinear elliptic problems with quadratic gradient terms, Ann. Inst. H. Poincar´e Anal. Non Linéaire 31(2) (2014), 249–265. DOI: 10.1016/j.anihpc.2013.03.002.
  • J. Benedikt and P. Drábek, Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. 93 (2013), 23–29. DOI: 10.1016/j.na.2013.07.026.
  • H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10(2) (1997), 443–469.
  • X. Cabré, Boundedness of stable solutions to semilinear elliptic equations: a survey, Adv. Nonlinear Stud. 17(2) (2017), 355–368. DOI: 10.1515/ans-2017-0008.
  • X. Cabré, A. Capella, and M. Sanchón, Regularity of radial minimizers of reaction equations involving the p-Laplacian, Calc. Var. Partial Differential Equations 34(4) (2009), 475–494. DOI: 10.1007/s00526-008-0192-3.
  • X. Cabré, A. Figalli, X. Ros-Oton, and J. Serra, Stable solutions to semilinear elliptic equations are smooth up to dimension 9, Acta Math. 224(2) (2020), 187–252. DOI: 10.4310/acta.2020.v224.n2.a1.
  • X. Cabré and M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the p-Laplacian, Commun. Pure Appl. Anal. 6(1) (2007), 43–67. DOI: 10.3934/cpaa.2007.6.43.
  • J. Carmona Tapia, A. Molino Salas, and J. D. Rossi, The Gelfand problem for the 1-homogeneous p-Laplacian, Adv. Nonlinear Anal. 8(1) (2019), 545–558. DOI: 10.1515/anona-2016-0233.
  • S. Chandrasekhar, “An Introduction to the Study of Stellar Structure”, Dover Publications, Inc., New York, N. Y., 1957.
  • P. Clément, D. G. de Figueiredo, and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 7(1) (1996), 133–170. DOI: 10.12775/TMNA.1996.006.
  • M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58(3) (1975), 207–218. DOI: 10.1007/BF00280741.
  • L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206(2) (2004), 483–515. DOI: 10.1016/j.jde.2004.05.012.
  • F. Demengel, On some nonlinear partial differential equations involving the “1”-Laplacian and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4 (1999), 667–686. DOI: 10.1051/cocv:1999126.
  • L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015.
  • J. García Azorero and I. Peral Alonso, On an Emden–Fowler type equation, Nonlinear Anal. 18(11) (1992), 1085–1097. DOI: 10.1016/0362-546X(92) 90197-M.
  • J. García Azorero, I. Peral Alonso, and J.-P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal. 22(4) (1994), 481–498. DOI: 10.1016/0362-546X(94)90169-4.
  • I. M. Gel’fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295–381.
  • R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249–276.
  • J. Jacobsen, Global bifurcation problems associated with K-Hessian operators, Topol. Methods Nonlinear Anal. 14(1) (1999), 81–130. DOI: 10.12775/TMNA. 1999.023.
  • J. Jacobsen and K. Schmitt, The Liouville–Bratu–Gelfand problem for radial operators, J. Differential Equations 184(1) (2002), 283–298. DOI: 10.1006/ jdeq.2001.4151.
  • D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269. DOI: 10. 1007/BF00250508.
  • D. D. Joseph and E. M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quart. Appl. Math. 28 (1970), 327–342. DOI: 10.1090/qam/272272.
  • B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44(4) (2003), 659–667.
  • H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361–1376.
  • P. Korman, Infinitely many solutions for three classes of self-similar equations with p-Laplace operator: Gelfand, Joseph-Lundgren and MEMS problems, Proc. Roy. Soc. Edinburgh Sect. A 148(2) (2018), 341–356. DOI: 10.1017/ S0308210517000038.
  • G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12(11) (1988), 1203–1219. DOI: 10.1016/0362-546X(88) 90053-3.
  • A. Mercaldo, J. D. Rossi, S. Segura de Leon, and C. Trombetti ´ , Behaviour of p-Laplacian problems with Neumann boundary conditions when p goes to 1, Commun. Pure Appl. Anal. 12(1) (2013), 253–267. DOI: 10.3934/cpaa.2013. 12.253.
  • A. Mercaldo, S. Segura de Leon, and C. Trombetti ´ , On the behaviour of the solutions to p-Laplacian equations as p goes to 1, Publ. Mat. 52(2) (2008), 377–411. DOI: 10.5565/PUBLMAT_52208_07.
  • F. Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations 5(8) (1980), 791–836. DOI: 10.1080/03605308008820155.
  • A. Molino, Gelfand type problem for singular quadratic quasilinear equations, NoDEA Nonlinear Differential Equations Appl. 23(5) (2016), Art. 56, 20 pp. DOI: 10.1007/s00030-016-0409-7.
  • M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal. Ser. A: Theory Methods 37(4) (1999), 431–448. DOI: 10.1016/S0362-546X(98)00057-1.
  • F. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S´er. I Math. 330(11) (2000), 997–1002. DOI: 10.1016/ S0764-4442(00)00289-5.
  • X. Ros-Oton, Regularity for the fractional Gelfand problem up to dimension 7, J. Math. Anal. Appl. 419(1) (2014), 10–19. DOI: 10.1016/j.jmaa.2014.04.048.
  • L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991), Phys. D 60(1–4) (1992), 259–268. DOI: 10.1016/0167-2789(92)90242-F.
  • J. C. Sabina de Lis and S. Segura de Leon´ , The limit as p → 1 of the higher eigenvalues of the p-Laplacian operator ∆p, Indiana Univ. Math. J. 70(4) (2021), 1395–1439. DOI: 10.1512/iumj.2021.70.8563.
  • M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal. 67(1) (2007), 281–294. DOI: 10.1016/j.na.2006.05.010.
  • S. Villegas, Boundedness of extremal solutions in dimension 4, Adv. Math. 235 (2013), 126–133. DOI: 10.1016/j.aim.2012.11.015.
  • W. P. Ziemer, “Weakly Differentiable Functions”. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120, Springer-Verlag, New York, 1989. DOI: 10.1007/978-1-4612-1015-3.