Testing a model for the monitoring of worked-out algebra-problem examplesfrom behaviours to outcomes on a math task

  1. Vicente Sanjosé 1
  2. Carlos B. Gómez-Ferragud 1
  3. José J. Verdugo-Perona 1
  4. Joan J. Solaz-Portolés 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
Psicología educativa

ISSN: 1135-755X

Año de publicación: 2022

Volumen: 28

Número: 2

Páginas: 141-149

Tipo: Artículo

DOI: 10.5093/PSED2021A25 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Psicología educativa

Resumen

Este estudio tiene como objetivo probar una extensión de un modelo teórico para el mecanismo de control metacognitivo que sirve para la detección de inconsistencias cuando la información proporcionada incluye símbolos abstractos además de texto natural. Se pidió a 94 postgraduados de especialidades STEM que leyeran un ejemplo resuelto de un problema de álgebra y que informaran sobre cualquier incoherencia, inconsistencia o error detectado en el enunciado o en el procedimiento de resolución. A partir de un modelo teórico se definió un conjunto de índices para describir el comportamiento de los participantes a lo largo de la tarea. Se utilizó el software Read & Answer para registrar online los datos de procesamiento individual y los informes de los participantes. Los resultados confirman las predicciones del modelo. Los índices predicen correctamente los resultados de los participantes en la tarea con gran precisión. Los comportamientos específicos de los alumnos podrían asociarse a los resultados observados de la tarea con suficiente confiabilidad dentro de las limitaciones del estudio. Además se ha comparado el procesamiento del álgebra con el procesamiento del texto natural.

Referencias bibliográficas

  • Andrà, C., Lindström, P., Arzarello, F., Holmqvist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eyetracking study. International Journal of Science and Mathematics Education, 13(2), 237-259. https://doi.org/10.1007/s10763-013-9484-y
  • Baars, M., Van Gog, T., de Bruin, A., & Paas, F. (2014). Effects of problem solving after worked example study on primary schoolchildren’s monitoring accuracy. Applied Cognitive Psychology, 28(3), 382-391. https://doi.org/10.1002/acp.3008
  • Baars, M., Van Gog, T., de Bruin, A., & Paas, F. (2017). Effects of problem solving after worked example study on secondary school children’s monitoring accuracy. Educational Psychology, 37(7), 810-834. https:// doi.org/10.1080/01443410.2016.1150419
  • Baker, L. (2002). Metacognition in comprehension instruction. In C. Collins & S. R. Parris (Eds.), Comprehension instruction: Research-based best practices (pp. 65-79). Guilford Press.
  • Baten, E., Praet, M., & Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM Mathematics Education, 49(4), 613-623. https://doi.org/10.1007/ s11858-017-0851-y
  • Boekaerts, M., & Rozendaal, J. S. (2010). Using multiple calibration indices in order to capture the complex picture of what affects students’ accuracy of feeling of confidence. Learning and Instruction, 20(5), 372- 382. https://doi.org/10.1016/j.learninstruc.2009.03.002
  • Cerdán, R., Gilabert, R., & Vidal-Abarca, E. (2011). Selecting information to answer questions: Strategic individual differences when searching texts. Learning and Individual Differences, 21(2), 201-205. https://doi. org/10.1016/j.lindif.2010.11.007
  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49. https://doi.org/10.3102/00346543063001001
  • Cooper, M. (1986). The dependence of multiplicative reversal on equation format. Journal of Mathematical Behaviour, 5(2), 115-120.
  • Cornoldi, C., Carretti, B., Drusi, S., & Tencati, C. (2015). Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory. British Journal of Educational Psychology, 85(3), 424-439. https://doi.org/10.1111/bjep.12083
  • Cox, M. T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Muñoz-Avila, H., & Perlis, D. (2016). MIDCA: A metacognitive, integrated dual-cycle architecture for self-regulated autonomy. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 3712-3718). AAAI Press.
  • Crippen, K. J., & Earl, B. L. (2004). Considering the efficacy of web-based worked examples in introductory chemistry. Journal of Computers in Mathematics and Science Teaching, 23(2), 151-167.
  • De Bruin, A. B., Rikers, R. M., & Schmidt, H. G. (2005). Monitoring accuracy and self-regulation when learning to play a chess endgame. Applied Cognitive Psychology, 19(2), 167-181. https://doi.org/10.1002/acp.1109
  • Dehaene, S. (2018). The error-related negativity, self-monitoring, and consciousness. Perspectives on Psychological Science, 13(2), 161-165. https://doi.org/10.1177/1745691618754502
  • Desoete, A., & De Craene, B. (2019). Metacognition and mathematics education: An overview. ZDM Mathematics Education. 51(4), 565-575. https://doi.org/10.1007/s11858-019-01060-w
  • Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special TopicsPhysics Education Research, 10(2), 020119. https://doi.org/10.1103/ PhysRevSTPER.10.020119
  • García, T., Cueli, M., Rodríguez, C., Krawec, J., & González-Castro, P. (2015). Conocimiento y habilidades metacognitivas en estudiantes con un enfoque profundo de aprendizaje. Evidencias en la resolución de. Revista de Psicodidáctica, 20(2), 209-226. https://doi.org/10.1387/ RevPsicodidact.13060
  • García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11(2), 139-170. https://doi.org/10.1007/ s11409-015-9139-1
  • González-Calero, J. A., Arnau, D., & Laserna-Belenguer, B. (2015). Influence of additive and multiplicative structure and direction of comparison on the reversal error. Educational Studies in Mathematics, 89(1), 133- 147. http://doi.org/10.1007/s10649-015-9596-0
  • Gómez-Ferragud, C. B., Sanjosé V., & Solaz-Portolés, J. J. (2016). Estudios sobre comprensión y control de la comprensión en resolución de problemas académicos. Revista de Enseñanza de la Física, 28(1), 21-35.
  • Gómez-Ferragud, C. B., Solaz-Portolés, J. J., & Sanjosé, V. (2013). Analogy construction and success in mathematics and science problemsolving: A study with secondary students. Revista de Psicodidáctica, 18(1), 81-111.
  • Hartman, H. J. (2001). Developing students’ metacognitive knowledge and skills. In H. Hartman (Ed.), Metacognition in learning and instruction (pp. 33-68). Kluwer.
  • Hyönä, J., Lorch, Jr. , R. F., & Rinck, M. (2003). Eye movement measures to study global text processing. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 313-334). Elsevier.
  • Jansen A. R., Marriott K., & Yelland G. W. (2007) Parsing of algebraic expressions by experienced users of mathematics. European Journal of Cognitive Psychology, 19(2), 286-320. https://doi. org/10.1080/09541440600709955
  • Jupri, A., & Drijvers, P. H. M. (2016). Student difficulties in mathematizing word problems in algebra. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2481-2502. https://doi.org/10.12973/ eurasia.2016.1299a
  • Kintsch, W. (1998). Comprehension: a paradigm for cognition. University Press. Koçak, R., & Boyaci, M. (2010). The predictive role of basic ability levels and metacognitive strategies of students on their academic success. Procedia-Social and Behavioural Sciences, 2(2), 767-772. https://doi. org/10.1016/j.sbspro.2010.03.099
  • Lucangeli, D., Penna, M. P., Fastame, M. C., Pedron, M., Porru, A., & Duca, V. (2019). Metacognition and errors: The impact of self-regulatory trainings in children with specific learning disabilities. ZDM Mathematics Education, 51(4). https://doi.org/10.1007/s11858-019-01044-w
  • Mañá, A., Vidal-Abarca, E., & Salmerón, L. (2017). Effect of delay on search decisions in a task-oriented reading environment. Metacognition and Learning, 12(1), 113-130. https://doi.org/10.1007/s11409-016-9162-x
  • Mason, L., Zaccoletti, S., Carretti, B., Scrimin, S., & Diakidoy, I. A. N. (2019). The role of inhibition in conceptual learning from refutation and standard expository texts. International Journal of Science and Mathematics Education, 17(3), 483-501. https://doi.org/10.1007/s10763-017-9874-7
  • McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behaviour, 55, 87-99. https://doi. org/10.1016/j.chb.2015.08.038
  • Mihalca, L., Mengelkamp, C., Schnotz, W., & Paas, F. (2015). Completion problems can reduce the illusions of understanding in a computer-based learning environment on genetics. Contemporary Educational Psychology, 41, 157-171. https://doi.org/10.1016/j.cedpsych.2015.01.001
  • Modestou, M., & Gagatsis, A. (2010). Cognitive and metacognitive aspects of proportional reasoning. Mathematical Thinking and Learning, 12(1), 36- 53. https://doi.org/10.1080/10986060903465822
  • Morales, J., Lau, H., & Fleming, S. M. (2018). Domain-general and domainspecific patterns of activity supporting metacognition in human prefrontal cortex. Journal of Neuroscience, 38(14), 3534-3546. https://doi. org/10.1523/JNEUROSCI.2360-17.2018
  • Nelson, L. J., & Fyfe, E. R. (2019). Metacognitive monitoring and help-seeking decisions on mathematical equivalence problems. Metacognition and Learning, 14(2), 167-187. https://doi.org/10.1007/s11409-019-09203-w
  • Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In H. B. Gordon (Ed.), Psychology of learning and motivation, 26 (pp. 125-173). Academic Press.
  • Otero, J. (2009). Question generation and anomaly detection in texts. In Handbook of metacognition in education (pp. 59-71). Routledge.
  • Otero, J., Campanario, J. M., & Hopkins, K. D. (1992). The relationship between academic achievement and metacognitive comprehension monitoring ability of Spanish secondary school students. Educational and Psychological Measurement, 52(2), 419-430. https://doi. org/10.1177/0013164492052002017
  • Otero, J., & Graesser, A. C. (2001). PREG: Elements of a model of question asking. Cognition and Instruction, 19(2), 143-175. https://doi.org/10.1207/ S1532690XCI1902_01
  • Otero, J., Ishiwa, K., & Sanjosé, V. (2008). Readers’ questioning: Some hints for automated question generation. Proceedings of the Workshop on the Question Generation Shared Task and Evaluation Challenge. Arlington, VA.
  • Otero, J., & Kintsch, W. (1992). Failures to detect contradiction in a text: What readers believe versus what they read. Psychological Science, 3(4), 229- 235. https://doi.org/10.1111/j.1467-9280.1992.tb00034.x
  • Özsoy, G., & Ataman, A. (2017). The effect of metacognitive strategy training on mathematical problem-solving achievement. International Electronic Journal of Elementary Education, 1(2), 67-82.
  • Qiu L., Su J., Ni, Y., Bai, Y., Zhang, X., Li, X., & Wang, X. (2018). The neural system of metacognition accompanying decision-making in the prefrontal cortex. PLoS Biology 16(4), e2004037. https://doi.org/10.1371/journal. pbio.2004037
  • Rayner, K., Schotter, E. R., Masson M. E. J., Potter M. C., & Treiman R. (2016). So much to read, so little time: How do we read, and can speed reading help? Psychological Science in the Public Interest, 17(1) 4-34. https://doi. org/10.1177/1529100615623267
  • Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38(1), 1-37. https://doi.org/10.1111/cogs.12086
  • Rinck, M., Gámez, E., Díaz, J. M., & De Vega, M. (2003). Processing of temporal information: Evidence from eye movements. Memory & Cognition, 31(1), 77-86. https://doi.org/10.3758/BF03196084
  • Salmerón, L., Naumann, J., García, V., & Fajardo, I. (2017). Scanning and deep processing of information in hypertext: An eye tracking and cued retrospective think-aloud study. Journal of Computer Assisted Learning, 33(3), 222-233. https://doi.org/10.1111/jcal.12152
  • Sánchez, E., & García-Rodicio, H. (2013). Using online measures to determine how learners process instructional explanations. Learning and Instruction, 26(1), 1-11. https://doi.org/10.1016/j.learninstruc.2012.12.003
  • Sanjosé, V., Fernández, J. J., & Vidal-Abarca, E. (2010). Importancia de las destrezas de procesamiento de la información en la comprensión de textos científicos. Infancia y Aprendizaje, 33(4), 529-541. https://doi. org/10.1174/021037010793139581
  • Sanjosé, V., & Torres, T. (2014). Questions generated on non-textual information: An empirical validation of the obstacle-goal model applied to the comprehension of scientific experimental devices. Universitas Psychologica, 13(1), 357-368.
  • Schotter, E. R., Tran, R., & Rayner, K. (2014). Don’t believe what you read (only once): Comprehension is supported by regressions during reading. Psychological Science, 25(6), 1218-1226. https://doi. org/10.1177/0956797614531148
  • Seery, M. K. (2013). Harnessing technology in chemistry education. New Directions in the Teaching of Physical Sciences, 9(1), 77-86. https://doi. org/10.11120/ndir.2013.00002
  • Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a timeline of word recognition: Evidence from eye movements and event-related potentials. Neuroreport, 9(10), 2195-220. https://doi.org/2195-2200. 10.1097/00001756-199807130-00009
  • Smith, A. D., Mestre, J. P., & Ross, B. H. (2010). Eye-gaze patterns as students study worked-out examples in mechanics. Physical Review Special Topics-Physics Education Research, 6(2), 020118. https://doi.org/10.1103/ PhysRevSTPER.6.020118
  • Sun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive Systems Research, 7(4), 327-338. https://doi.org/10.1016/j.cogsys.2005.09.001
  • Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16(2), 165-169. https://doi.org/10.1016/j. learninstruc.2006.02.005
  • Throndsen, I. (2011). Self-regulated learning of basic arithmetic skills: A longitudinal study. British Journal of Educational Psychology, 81(4), 558-578. https://doi.org/10.1348/2044-8279.002008
  • Van der Schoot, M., Reijntjes, A., & van Lieshout, E. C. (2012). How do children deal with inconsistencies in text? An eye fixation and selfpaced reading study in good and poor reading comprehenders. Reading and Writing, 25(7), 1665-1690. https://doi.org/10.1007/s11145-011- 9337-4
  • Van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22(2), 155-174. https://doi.org/10.1007/s10648- 010-9134-7
  • Vidal-Abarca, E., & Cerdán, R. (2013). Read & answer: An application to study task-oriented reading situations. Information Design Journal, 20(1), 70-78. https://doi.org/10.1075/idj.20.1.07vid
  • Vosniadou, S., Pearson, P. D., & Rogers, T. (1988). What causes children’s failures to detect inconsistencies in text? Representation versus comparison difficulties. Journal of Educational Psychology, 80(1), 27- 39. https://doi.org/10.1037/0022-0663.80.1.27
  • Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. Review of Educational Research, 63(3), 249- 294. https://doi.org/10.2307/1170546
  • Yeung, N., & Summerfield, C. (2014). Shared mechanisms for confidence judgements and error detection in human decision making. In S. Fleming & C. Frith (Eds.), The cognitive neuroscience of metacognition (pp. 147-167). Springer
  • Young, A., & Fry, J. D. (2008). Metacognitive awareness and academic achievement in college students. Journal of the Scholarship of Teaching and Learning, 8(2), 1-10.