Varietats lorentzianes en la representació dels estats estacionaris dels àtoms hidrogenoides en la teoria de de Broglie - Bohm. Uns models heurístics

  1. Gómez Blanch, Guillem
Dirigida por:
  1. Màrius Josep Fullana Alfonso Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 25 de octubre de 2021

Tribunal:
  1. Juan Antonio Morales Lladosa Presidente
  2. Alicia Herrero Debón Secretario/a
  3. Vicente Francisco Candela Pomares Vocal

Tipo: Tesis

Resumen

Aquesta tesi s'adreça a esbrinar l'aplicabilitat de la geometria lorentziana per a representar el moviment de l'electró en àtoms hidrogenoides segons la teoria quàntica de de Broglie-Bohm (dBB). Parteix de la constatació que els electrons es comporten de manera diferent quan formen part de sistemes atòmics que quan són no lligats. Mentre que aquests, quan descriuen trajectòries curvilínies emeten energia, en els electrons lligats a àtoms hidrogenoides segons dBB descriuen trajectòries circulars de manera estacionària, sense emissió energètica. L'anterior consideració ens suggereix la hipòtesi que els electrons lligats a àtoms hidrogenoides es mouen en espais corbats, en què llurs trajectòries en són geodèsiques i per tant sense acceleració ni emissió energètica que implicarien inestabilitat de la matèria. Utilitzem la geometria lorentziana i alguns conceptes de la Teoria de la Relativitat General d'Einstein, amb caràcter heurístic, per a descriure aquest espai-temps. Establim una equivalència en l'àmbit diferencial mitjançant la tetravelocitat i utilitzem connectors de Levi-Civita, que unifiquen les geodèsiques mètriques i les afins. Arribem així a la formulació d'un teorema i diversos corol·laris que afecten els components de les mètriques que satisfan l'anterior hipòtesi. Aquestes mètriques han de complir a més la condició de ser comuns a totes les possibles trajectòries dels electrons del mateix estat quàntic magnètic i de dues hipòtesis addicionals: que la curvatura escalar siga positiva (per tal d'evitar trajectòries geodèsiques que escapen a l'infinit) i que siga positiu el component energètic del tensor d'impulsió-energia corresponent a l'equació de camp d'Einstein, puix encara que aquesta és inaplicable als sistemes quàntics, modernes modificacions fan pensar que és una suposició plausible. Amb aquests condicionants emprenem la recerca de mètriques que complisquen les restriccions adés esmentades. Comencem amb dues mètriques senzilles que compleixen el requisit de l'espai-temps comú i del caràcter geodèsic de les trajectòries, però la curvatura i el component energètic del tensor d'impulsió-energia hi són negatius, per la qual cosa acudim a utilitzar una solució exacta de les equacions de camp d'Einstein corresponents a un espai-temps creat per partícules que giren al voltant d'un eix (mètrica de Lanczos-Van Stockum). Aleshores obtenim dues mètriques que corregeixen els defectes de les anteriors, però llurs geodèsiques no compleixen exactament la condició de circularitat. Finalment realitzem una síntesi d'ambdós models i obtenim dues mètriques que compleixen raonablement els requisits, amb les quals atenyem l'objectiu proposat de representar el moviment dels electrons hidrogenoides segons la teoria dBB en una geometria lorentziana. El potencial quàntic de la teoria dBB, apareix llavors com a aquell que, junt a l'electromagnètic del nucli, configura una força resultant que fa girar l'electró al voltant d'un eix que passa pel nucli. En la formulació lorentziana proposada en aquest treball, aquesta funció és exercida per la curvatura de l'espai-temps. També derivem de les nostres hipòtesis heurístiques que la dualitat ona-corpuscle en la teoria dBB amb les nostres consideracions exerceix una interacció bidireccional més enllà del mer paper passiu que té la partícula en aquesta teoria: ona i partícula resten al mateix nivell interactuant una sobre l'altra i vici-versa de manera dialèctica.