Leyes y modelos en la explicación biológica

  1. Luque, Víctor 1
  1. 1 Universitat de València, España
Revista:
Ludus vitalis: revista de filosofía de las ciencias de la vida = journal of philosophy of life sciences = revue de philosophie des sciences de la vie

ISSN: 1133-5165

Año de publicación: 2014

Volumen: 22

Número: 42

Páginas: 91-101

Tipo: Artículo

Otras publicaciones en: Ludus vitalis: revista de filosofía de las ciencias de la vida = journal of philosophy of life sciences = revue de philosophie des sciences de la vie

Resumen

Laws and models in biological explanationFor years, the controversy over the existence of laws in biology has concerned and confronted philosophers and biologists. Even so, it could be said that biologists have been working without them during the last hundred and fifty years. They have using their time to developed (essentially mathematical) models to express biological facts. Thus, the challenge is to find out how models explain. Alisa Bokulich, in a recent paper called “How scientific models can explain”, analyzes three theoretical approximations to the explanatory capacity of scientific models (Carl Craver’s mechanistic model explanation; Mehmet Elgin and Elliott Sober’s covering-law model explanation, and Ernan McMullin’s causal model explanation) and proposes her own. We study such model, known as model explanation, and use the Hardy-Weinberg equilibrium model as an example of what a biological law can be. 

Referencias bibliográficas

  • Beatty, J. (1995), “The evolutionary contingency thesis”, in G. Wolters, and J. G. Lennox, (eds.), Concepts, Theories, and Rationality in the Biological Sciences, The Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science. Pittsburgh: University of Pittsburgh Press, pp. 45-81.
  • Bokulich, A. (2009), “Explanatory fictions,” in M. Suarez (ed.) Fictions in Science: Philosophical Essays on Modeling and Idealization. London: Routledge, pp. 91109.
  • –– (2011), “How scientific models can explain,” Synthese, 180(1): 33-45.
  • –– (2012), “Distinguishing explanatory from non-explanatory fictions,” Philosophy of Science 79(5): 725-737.
  • Cabrero, J. & Camacho, J. P. (2003), “Fundamentos de genética de poblaciones”, en Soler, M. (ed.), Evolución: la base de la biología. Granada: Proyecto Sur de Ediciones, pp. 83-126.
  • Craver, C. (2006), “When mechanistic models explain,” Synthese 153: 335-376.
  • Elgin, M. (2006), “There may be strict empirical laws in biology, after all,” Biology and Philosophy 21: 119-134.
  • Elgin, M. & Sober, E. (2002), “Cartwright on explanation and idealization,” Erkenntnis 57: 441-450.
  • Fontdevila, A. & Moya, A. (2003), Evolución: Origen, adaptación y divergencia de las especies. Madrid: Síntesis.
  • Gillespie, J. (2004), Population Genetics: A Concise Guide. Baltimore: The John Hopkins University Press.
  • Iranzo, V. (2011), “Ciencia, modelos, ¿ficciones?”, Teorema XXX/2: 157-173.
  • Mayr, E. (2004), What Makes Biology Unique. Cambridge: Cambridge University Press.
  • McMullin, E. (1978), “Structural explanation,” American Philosophical Quarterly 15 (2): 139-147.
  • –– (1985), “Galilean idealization,” Studies in History and Philosophy of Science 16: 247-273.
  • Provine, W. (2001), The Origins of Theoretical Population Genetics. Chicago: The University of Chicago Press.
  • Rosenberg, A. (2006), Darwinian Reductionism or How to Stop Worrying and Love Molecular Biology. Chicago: University of Chicago Press.
  • Ruse, M. (1979), La filosofía de la biología. Madrid: Alianza.
  • Smart, J. J. C. (1963), Philosophy and Scientific Realism. London: Routledge & Kegan Paul.
  • Sober, E. (1984), The Nature of Selection. Chicago: The University of Chicago Press. –– (2000), Philosophy of Biology (second edition). Oxford: Oxford University Press.
  • Suárez, M. (ed.) (2009), Fictions in Science: Philosophical Essays on Modeling and Idealization. London: Routledge.
  • Templeton, A. (2006), Population Genetics and Microevolutionary Theory. New Jersey: John Wiley & Sons, Inc.