Catalizadores metálicos estructurados en reacciones de química sostenible

  1. López Hernández, Irene
Dirigida por:
  1. Antonio Eduardo Palomares Gimeno Director/a
  2. Jesús Mengual Cuquerella Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 27 de julio de 2021

Tribunal:
  1. Julia Aguilar Pliego Presidente/a
  2. Valentín Pérez Herranz Secretario/a
  3. V. Martínez-Soria Vocal

Tipo: Tesis

Resumen

En esta tesis doctoral se ha investigado sobre el empleo de catalizadores metálicos estructurados en diversas reacciones de Química Sostenible. En primer lugar, se ha estudiado la eliminación de los NOX mediante su reducción catalítica selectiva empleando amoniaco. Se han empleado catalizadores de Mn-Fe soportados sobre zeolitas con distinta relación Si/Al y morfología (BEA, CHA, ITQ-2 y FAU), materiales mesoporosos (MCM-41 y SBA-15) y óxidos metálicos (MgO, TiO2 y ¿-Al2O3). Se ha comprobado que existe una fuerte influencia del tipo de soporte sobre la actividad catalítica, obteniéndose los mejores resultados con los catalizadores cuyos soportes presentaban propiedades ácidas y que tenían una elevada área superficial. Para el caso de las zeolitas, su morfología no influye tanto en la actividad catalítica como la relación Si/Al, obteniéndose los mejores resultados con los catalizadores soportados sobre zeolitas con alta relación Si/Al. En cuanto a los catalizadores soportados sobre óxidos metálicos, se han obtenido los mejores resultados con aquellos catalizadores soportados en óxidos con alta área superficial y propiedades ácidas. Los resultados más prometedores, sobre todo por su elevada estabilidad hidrotérmica, se obtuvieron con el catalizador preparado con la zeolita CHA (Si/Al = 10), que mantiene toda su actividad después de ser sometido a envejecimiento. En segundo lugar, se ha estudiado la reacción de oxidación de CO utilizando catalizadores basados en Ag y Ag-Au, soportados en la zeolita ITQ-2. Los catalizadores de plata se han empleado para estudiar la influencia de las especies de Ag en la actividad catalítica. Para ello, los catalizadores se han preparado mediante tres métodos diferentes que conducen a la formación de distintas especies de plata: impregnación a volumen de poro, intercambio iónico, y con nanoclusters de Ag25(SR)18 soportados. El análisis de los resultados catalíticos obtenidos, junto con los resultados de caracterización han permitido determinar que la especie activa es la plata metálica, logrando los mejores resultados con los catalizadores que presentaban una mayor cantidad de esta especie en su superficie, lo cual viene determinado por el método de adición de la plata y por la evolución de estas especies durante su activación y durante los sucesivos ciclos de reacción. Los catalizadores bimetálicos Ag-Au fueron preparados mediante la impregnación de nanoclusters AgxAu25-x(SR)18 sobre la zeolita ITQ-2. Los resultados mostraron que la mejor actividad era obtenida cuando se producía la formación de nanopartículas aleadas de Ag-Au, que favorecían la adsorción del CO y del O2. Estas partículas se formaban tras la destrucción parcial de los ligandos tiolatos. Se ha comprobado que, durante la reacción, todos los nanoclusters evolucionaban hacia la formación de nanopartículas Ag-Au independientemente del pretratamiento aplicado. Estos resultados, han permitido mostrar que la reacción de oxidación de CO es una herramienta muy útil para seguir la evolución de los nanoclusters metálicos durante los procesos de activación, y durante la reacción. Por último, se ha estudiado la actividad en la semihidrogenación del fenilacetileno a estireno de los catalizadores con nanoclusters de oro con distinto número de átomos, Au25 y Au11, y con diferentes ligandos (tiolato para Au25 y fosfina para Au11). Estos catalizadores fueron soportados sobre óxidos metálicos (MgO, ¿-Al2O3 e hidrotalcita Mg/Al), observándose que la actividad depende tanto de la composición de los nanoclusters, como del soporte y del pretratamiento. Se ha determinado que la activación parcial del H2 es un factor clave, y está relacionado con las propiedades ácido/base del soporte. Los mejores resultados se obtuvieron con los catalizadores con nanoclusters Au25 sobre la hidrotalcita Mg/Al, la cual presenta una basicidad intermedia, lo que favorece la activación del hidrógeno, evitando la sobrehidrogenación de los alquinos a alquenos.