Estimating vote party entries and exits by ecologicalinference. Mathematical programming versus Bayesianstatistics
- Romero, Rafael 1
- Pavía, Jose M. 2
-
1
Universidad Politécnica de Valencia
info
-
2
Universitat de València
info
ISSN: 1889-3805
Año de publicación: 2021
Volumen: 37
Número: 2
Páginas: 85-97
Tipo: Artículo
Otras publicaciones en: BEIO, Boletín de Estadística e Investigación Operativa
Resumen
Ecological regression has been very fertile in proposing procedures that can be used to estimate the so-calledvote transfer matrices. According to various studies, the method implemented in theRfunctionei.MD.bayesis the one that currently presents the best performance. This method, based on a hierarchical Multinomial-Dirichlet model, is estimated from a Bayesian framework, which demands highly trained and experiencedusers. The procedure also seems to require having data for a large number of voting units to generate goodestimates, which increases both its computational and operative burden. In this work we show through anexample how the new algorithm available in theRfunctionlphom, based on linear programming, is highlycompetitive, generating solutions comparable to the ones attained withei.MD.bayeseven with few units,which drastically reduces its computational and operative costs.lphomis also very easy to use.
Referencias bibliográficas
- Collingwood, Loren, Ari Decter-Frain, Hikari Murayama, Pratik Sachdeva y Juandalyn Burke (2020). eiCompare: Compares Ecological Inference, Goodman, Rows by Columns Estimates. R package version 3.0.0. url: https://CRAN.R-project.org/package=eiCompare.
- EST2, (Consultor´ıa, Innovaci´on y Desarrollo, S.L.) (2017). ✭✭An´alisis del trasvase electoral entre las dos vueltas de las elecciones presidenciales francesas✮✮. En: url: www.est2.es.
- Greiner, D. James y Kevin M. Quinn (2009). ✭✭R x C Ecological inference: bounds, correlations, flexibility and transparency of assumptions✮✮. En: Journal of the Royal Statistical Society. Series A (Statistics in Society) 172.1, p´ags. 67-81. issn: 09641998, 1467985X. url: http://www.jstor. org/stable/30136741.
- Jonston, R. J. y A. M. Hay. (1983). ✭✭Voter transition probability estimates: an entropy-maximizing approach✮✮. En: European Journal of Political Research 11.1, p´ags. 93-98. doi: https://doi.org/ 10.1111/j.1475-6765.1983.tb00045.x. eprint: https://ejpr.onlinelibrary.wiley.com/ doi/pdf/10.1111/j.1475-6765.1983.tb00045.x. url: https://ejpr.onlinelibrary.wiley. com/doi/abs/10.1111/j.1475-6765.1983.tb00045.x.
- King, Gary (1997). A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data. Princeton University Press. isbn: 9780691012407. url: http://www. jstor.org/stable/j.ctt46n43p.
- King, Gary y Molly Roberts (2016). ei: Ecological Inference. R package version 1.3-3. url: https: //CRAN.R-project.org/package=ei.
- King, Gary, Ori Rosen y Martin A. Tanner (1999). ✭✭Binomial-Beta hierarchical models for ecological inference✮✮. En: Sociological Methods & Research 28.1, p´ags. 61-90. doi: 10.1177/0049124199028001004. eprint: https://doi.org/10.1177/0049124199028001004. url: https://doi.org/10.1177/ 0049124199028001004.
- Klima, A., C. Thurner P. W. anb Molnar, T. Schlesinger y H. K¨uhenhoff (2016). ✭✭Estimation of voter transitions based on ecological inference: an empirical assessment of different approaches✮✮. En: AStA - Advances in Statistical Analysis 100, p´ags. 133-159. doi: https://doi.org/10.1007/ s10182-015-0254-8.
- Las Provincias (2017). ✭✭10 mayo 2017✮✮. En: Las Provincias (peri´odico local espa˜nol), p´ag. 2.
- Lau, Olivia, Ryan T. Moore y Michael Kellermann (2020). eiPack: Ecological Inference and HigherDimension Data Management. R package version 0.2-1. url: https://CRAN.R- project.org/ package=eiPack.
- Pavía, Jose M. y Rafael Romero (2021a). ✭✭Improving estimates accuracy of voter transitions. Two new algorithms for ecological inference based on linear programming✮✮. En: doi: https://doi. org/10.31124/advance.14716638.v1.
- Pavía, Jose M. y Rafael Romero (2021b). lphom: Ecological Inference by Linear Programming under Homogeneity. R package version 0.1.4. url: https://CRAN.R-project.org/package=lphom.
- Petropoulos, Fotios y col. (2021). Forecasting: theory and practice. arXiv: 2012.03854 [stat.AP].
- Plescia, Carolina y Lorenzo De Sio (2018). ✭✭An evaluation of the performance and suitability of RxC methods for ecological inference with known true values✮✮. En: Quality and Quantity 52, p´ags. 669-683.
- Pons, Vicent (2017). ✭✭Comme expliquer les transferts de voix du premier au second tour✮✮. En: Le Figaro 17 mayo, p´ag. 13.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-project.org/.
- Romero, Rafael, Jose M. Pav´ıa, Jorge Mart´ın y Gerardo Romero (2020). ✭✭Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election✮✮. En: Journal of Applied Statistics 47.13-15, p´ags. 2711-2736. doi: 10.1080/02664763. 2020 . 1804842. eprint: https : / / doi . org / 10 . 1080 / 02664763 . 2020 . 1804842. url: https : //doi.org/10.1080/02664763.2020.1804842.
- Rosen, Ori, Wenxin Jiang, Gary King y Martin A. Tanner (2001). ✭✭Bayesian and frequentist inference for ecological inference: The R × C case✮✮. English (US). En: Statistica Neerlandica 55.2, págs. 134-156. issn: 0039-0402. doi: 10.1111/1467-9574.00162.
- Upton, Graham J. G. (1978). ✭✭A note on the estimation of voter transition probabilities✮✮. En: Journal of the Royal Statistical Society. Series A (General) 141.4, p´ags. 507-512. issn: 00359238. url: http://www.jstor.org/stable/2344485.