Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsulaevent runoff at plot scale during a rare flash flood at the Barranco de Benacancil

  1. Artemi Cerdà 3
  2. Agata Novara 4
  3. Pavel Dlapa 12
  4. Manuel López Vicente 13
  5. Xavier Úbeda 14
  6. Zorica Popovic 10
  7. Mulatie Mekonnen 9
  8. Enric Terol 11
  9. Saeid Janizadeh 1
  10. Sonia Mbarki 2
  11. Eduardo Saldanha Vogelmann 5
  12. Sajjad Hazrati 6
  13. Srikanta Sannigrahi 7
  14. Misagh Parhizkar 8
  15. Antonio Giménez Morera 11
  1. 1 Tarbiat Modares University
    info

    Tarbiat Modares University

    Teherán, Irán

    ROR https://ror.org/03mwgfy56

  2. 2 National Research Institute of Rural Engineering, Water and Forests
    info

    National Research Institute of Rural Engineering, Water and Forests

    Ariana, Túnez

    ROR https://ror.org/02zcy8d62

  3. 3 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  4. 4 University of Palermo
    info

    University of Palermo

    Palermo, Italia

    ROR https://ror.org/044k9ta02

  5. 5 Fundação Universidade Federal do Rio Grande
    info

    Fundação Universidade Federal do Rio Grande

    Rio Grande, Brasil

    ROR https://ror.org/05hpfkn88

  6. 6 University of Tehran
    info

    University of Tehran

    Teherán, Irán

    ROR https://ror.org/05vf56z40

  7. 7 University College Dublin
    info

    University College Dublin

    Dublín, Irlanda

    ROR https://ror.org/05m7pjf47

  8. 8 University of Guilan
    info

    University of Guilan

    Rasht, Irán

    ROR https://ror.org/01bdr6121

  9. 9 Bahir Dar University
    info

    Bahir Dar University

    Bahir Dar, Etiopía

    ROR https://ror.org/01670bg46

  10. 10 University of Belgrade
    info

    University of Belgrade

    Belgrado, Serbia

    ROR https://ror.org/02qsmb048

  11. 11 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

  12. 12 Comenius University
    info

    Comenius University

    Bratislava, Eslovaquia

    ROR https://ror.org/0587ef340

  13. 13 Wageningen Environmental Research
  14. 14 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Romero Díaz, María Asunción (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2021

Volumen: 47

Número: 1

Páginas: 95-119

Tipo: Artículo

DOI: 10.18172/CIG.4833 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

Las inundaciones son consecuencia de lluvias extremas. Aunque la generación de escorrentía superficial es el origen de la descarga, la investigación de inundaciones generalmente se enfoca en las tierras bajas donde el impacto es mayor. La escorrentía y la distribución de sedimentos a escala de pendiente y pedón reciben mucha menos atención en la comprensión del comportamiento de las inundaciones en el tiempo y el espacio. Esto es especialmente relevante en zonas donde, debido a las condiciones climáticas e hidrogeológicas, los cauces son efímeros. Son los llamados ríos secos (“wadis”, “ramblas” o “barrancos”) muy extendidos por todo el Mediterráneo. Este artículo investiga la relación entre el suministro de agua a escala de pedón y ladera con las crecidas de ríos secos en Macizo del Caroig, este de la Península Ibérica. Las parcelas de 1x1, 1x2, 1x4 y 2x8 m localizadas en la Estación de Investigación de Erosión y Degradación de Suelos “El Teularet” fueron monitoreadas de 2004 a 2014 para medir la producción de suelo y agua. También se monitorearon las precipitaciones y el caudal en el río seco Barranco de Benacancil. Los resultados muestran que la escorrentía y la descarga de sedimentos se concentraron en pocos eventos durante los 11 años de investigación. Se registró un solo evento de inundación en el canal el 28 de septiembre de 2009, sin embargo, la escorrentía se registró 160 veces en las parcelas. La descarga de escorrentía dependió del tamaño de las parcelas. Las parcelas más grandes produjeron una menor descarga de escorrentía por unidad de área, lo que sugiere una corta distancia y duración del recorrido de escorrentía. Tres eventos de lluvia contribuyeron con el 26% de la descarga total de la escorrentía y cinco lograron el 56% de la escorrentía. Se concluye que la escorrentía generada a escala de la parcela está desconectada del canal principal. Desde un punto de vista espacial, hay una disminución en el coeficiente de escorrentía a lo largo de la pendiente. Desde un punto de vista temporal, la escorrentía se concentra en unos pocos eventos de lluvia. Estos resultados muestran que la escorrentía generada a escala de parcela y pendiente no contribuyen a las inundaciones excepto para eventos de lluvia con más de 100 mm día-1. La desconexión de la escorrentía y la entrega de sedimentos se confirma por la reducción de la escorrentía a escala de parcela debido al control de la longitud (pendiente) sobre la escorrentía y la entrega de sedimentos.

Información de financiación

Artemi Cerdà thanks the Co-operative Research program from the OECD (Biological Resource Management for Sustainable Agricultural Systems) for its support with the 2016 CRP fellowship (OCDE TAD/CRP JA00088807), POSTFIRE Project (CGL2013-47862-C2-1 and 2-R), and POSTFIRE_CARE Project (CGL2016-75178-C2-2-R) sponsored by the Spanish Ministry of Economy and Competitiveness and AEI/FEDER, UE. This paper was written as a result of the collaboration that was initiated due to the COST ActionES1306: Connecting European Connectivity research and COST CA18135 FIRElinks: Fire in the Earth System. Science and Society. We wish to thank the Department of Geography secretariat team (Nieves Gómez, Nieves Dominguez, and Susana Tomás) for their support for three decades to our research at the Soil Erosion and Degradation Research team (SEDER), with special thanks to the scientific researchers that as visitors from other research teams contributed to the

Financiadores

Referencias bibliográficas

  • Alpert, P., Ben‐Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., Manes, A. 2020. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29 (11), 31-1. https://doi.org/10.1029/2001GL013554.
  • Bagarello, V., Ferro, V., Keesstra, S., Comino, J.R., Pulido, M., Cerdà, A. 2018. Testing simple scaling in soil erosion processes at plot scale. Catena 167, 171-180. https://doi.org/10.1016/j.catena.2018.04.035.
  • Bannari, A., Kadhem, G., El-Battay, A., Hameid, N.A., Rouai, M. 2016. Assessment of land erosion and sediment accumulation caused by runoff after a flash-flooding storm using topographic profiles and spectral indices. Advances in Remote Sensing 5(4), 315-354. https://doi.org/10.4236/ars.2016.54024.
  • Bauer, T., Ingram, V., De Jong, W., Arts, B. 2018. The socio-economic impact of extreme precipitation and flooding on forest livelihoods: evidence from the Bolivian Amazon. International Forestry Review 20 (3), 314-331. https://doi.org/10.1505/146554818824063050.
  • Beguería, S., López‐Moreno, J.I., Gómez‐Villar, A., Rubio, V., Lana‐Renault, N., García‐Ruiz, J.M. 2006. Fluvial adjustments to soil erosion and plant cover changes in the Central Spanish Pyrenees. Geografiska Annaler: Series A, Physical Geography 88 (3), 177-186. https://doi.org/10.1111/j.1468-0459.2006.00293.x.
  • Bhattarai, R., Dutta, D. 2007. Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resources Management 21(10), 1635-1647. https://doi.org/10.1007/s11269-006-9118-z.
  • Bracken, L.J., Croke, J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems. Hydrological Processes 21(13), 1749-1763. https://doi.org/10.1002/hyp.6313.
  • Bronstert, A., Vollmer, S., Ihringer, J. 1995. A review of the impact of land consolidation on runoff production and flooding in Germany. Physics and Chemistry of the Earth, 20 (3-4), 321-329.
  • Cammeraat, E.L. 2004. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture, Ecosystems & Environment 104(2), 317-332. https://doi.org/10.1016/j.agee.2004.01.032.
  • Cerdà, A., Rodrigo-Comino, J. 2020. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrology & Hydrobiology, 20(1), 59-72. https://doi.org/10.1016/j.ecohyd.2019.05.006.
  • Cerdà, A., Keesstra, S.D., Rodrigo-Comino, J., Novara, A., Pereira, P., Brevik, E., Giménez-Morera, A., Fernández-Raga, M., Pulido, M., di Primal, S., Jordán, A. 2017. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. Journal of Environmental Management 202, 268-275. https://doi.org/10.1016/j.jenvman.2017.07.036.
  • Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Keesstra, S.D. 2017. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecological Engineering 108, 162-171. https://doi.org/10.1016/j.ecoleng.2017.08.028.
  • Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E.C., Vaezi, A.R., Pulido, M., Giménez-Morera, A., Keesstra, S.D. 2018. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment 42(2), 202-219. https://doi.org/10.1177/0309133318758521.
  • Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol, E., Mora-Navarro, G., Arabameri, A., Radziemska, M., Novara, A., Kavian, A., Vaverková, M.D., Abd-Elmabod, S.K., Hammad, H.M., Daliakopoulos, I.N. 2020. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 12(6), 1539. https://doi.org/10.3390/w12061539.
  • Chalise, D., Kumar, L., Kristiansen, P. 2019. Land degradation by soil erosion in Nepal: a review. Soil Systems 3(1), 12. https://doi.org/10.3390/soilsystems3010012.
  • Chalise, D., Kumar, L., Sharma, R., Kristiansen, P. 2020. Assessing the impacts of tillage and mulch on soil erosion and corn yield. Agronomy 10(1), 63. https://doi.org/10.3390/agronomy10010063.
  • Contreras, F.I., Mastretta, G.M., Piccolo, M.C., Perillo, G.M.E. 2021. Spatio-temporal variability monitoring of the floods in the center-west of the Buenos Aires Province (Argentina) using remote sensing techniques. Geographical Research Letters (Cuadernos de Investigación Geográfica) 47. https://doi.org/10.18172/cig.4477.
  • Daliakopoulos, I.N., Tsanis, I.K. 2012. A weather radar data processing module for storm analysis. Hydroinformatics 14 (2), 332-344. https://doi.org/10.2166/hydro.2011.118.
  • De Vente, J., Poesen, J. 2005. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Science Reviews 71(1-2), 95-125. https://doi.org/10.1016/j.earscirev.2005.02.002.
  • Downs, P.W., Thorne, C.R. 2000. Rehabilitation of a lowland river: reconciling flood defence with habitat diversity and geomorphological sustainability. Journal of Environmental Management 58(4), 249-268. https://doi.org/10.1006/jema.2000.0327.
  • Dunne, T., Dietrich, W.E. 1980. Experimental investigation of Horton overland flow on tropical hillslopes. 2. Hydraulic characteristics and hillslopes hydrographs. Zeitschrift für Geomorphologie 35, 60-80.
  • Geremew, A., Triest, L. 2019. Hydrological connectivity and vegetative dispersal shape clonal and genetic structure of the emergent macrophyte Cyperus papyrus in a tropical highland lake (Lake Tana, Ethiopia). Hydrobiologia 843(1), 13-30. https://doi.org/10.1007/s10750-017-3466-y.
  • González-Hidalgo, J.C., Batalla, R.J., Cerda, A. 2013. Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale. Catena 102, 40-45. https://doi.org/10.1016/j.catena.2010.10.011.
  • González-Hidalgo, J.C., Batalla, R.J., Cerda, A., de Luis, M. 2012. A regional analysis of the effects of largest events on soil erosion. Catena 95, 85-90. https://doi.org/10.1016/j.catena.2012.03.006.
  • González‐Hidalgo, J.C., de Luis, M., Batalla, R.J. 2009. Effects of the largest daily events on total soil erosion by rainwater. An analysis of the USLE database. Earth Surface Processes and Landforms 34 (15), 2070-2077. https://doi.org/10.1002/esp.1892.
  • Guhathakurta, P., Sreejith, O.P., Menon, P.A. 2011. Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science 120 (3), 359.
  • Hamilton, L.S. 1987. What are the impacts of Himalayan deforestation on the Ganges-Brahmaputra lowlands and delta? Assumptions and facts. Mountain Research and Development 7 (3), 256-263. https://doi.org/10.2307/3673202 .
  • Horton, R.E. 1933. The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union 14 (1), 446-460.
  • Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., Caspari, T. 2011. Identification of runoff processes–The impact of different forest types and soil properties on runoff formation and floods. Journal of Hydrology 409 (3-4), 637-649. https://doi.org/10.1016/j.jhydrol.2011.08.067.
  • Jourgholami, M., Labelle, E.R. 2020. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Annals of Forest Science, 77 (1), 1-11. https://doi.org/10.1007/s13595-020-00938-0.
  • Kalantari, Z., Ferreira, C.S.S., Keesstra, S., Destouni, G. 2018. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Current Opinion in Environmental Science & Health 5, 73-78. https://doi.org/10.1016/j.coesh.2018.06.003.
  • Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms 32 (1), 49-65. https://doi.org/10.1002/esp.1360.
  • Keesstra, S.D., Van Dam, O., Verstraeten, G.V., Van Huissteden, J. 2009. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena, 78 (1), 60-71. https://doi.org/10.1016/j.catena.2009.02.021.
  • Keesstra, S., Nunes, J.P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., Cerdà, A. 2018. The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment 644, 1557-1572. https://doi.org/10.1016/j.scitotenv.2018.06.342.
  • Keesstra, S.D., Davis, J., Masselink, R.H., Casalí, J., Peeters, E.T., Dijksma, R. 2019. Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. Journal of Soils and Sediments 19 (3), 1598-1612. https://doi.org/10.1007/s11368-018-02223-0.
  • Kirkby, M.J. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms, 35 (13), 1621-1623. https://doi.org/10.1002/esp.2063.
  • Langhans, C., Diels, J., Clymans, W., Van den Putte, A., Govers, G. 2019. Scale effects of runoff generation under reduced and conventional tillage. Catena 176, 1-13. https://doi.org/10.1016/j.catena.2018.12.031.
  • Lasanta, T., Arnáez, J., Nadal-Romero, E. 2019. Soil degradation, restoration and management in abandoned and afforested lands. In: P. Pereira (Ed.). Advances in Chemical Pollution, Environmental Management and Protection: Soil Degradation, Restoration and Management in a Global Change Context. Elsevier, pp. 71-116. https://doi.org/10.1016/bs.apmp.2019.07.002.
  • López-Bermúdez, F., Romero-Díaz, A. 1993. Génesis y consecuencias erosivas de las lluvias de alta intensidad en la región Mediterránea. Geographical Research Letters (Cuadernos de Investigación Geográfica) 18-19, 7-28. https://doi.org/10.18172/cig.1000.
  • López-Bermúdez, F., Romero-Díaz, A., Martínez-Fernández, J. 1998. Vegetation and soil erosion under semi-arid Mediterranean climate: a case study from Murcia (Spain). Geomorphology 24, 51-58. https://doi.org/10.1016/S0169-555X(97)00100-1.
  • López-Vicente, M., Navas, A. 2012. A new distributed rainfall runoff (DR2) model based on soil saturation and runoff cumulative processes. Agricultural Water Management 104, 128-141. https://doi.org/10.1016/j.agwat.2011.12.007.
  • López‐Moreno, J.I., Vicente‐Serrano, S.M., Gimeno, L., Nieto, R. 2009. Stability of the seasonal distribution of precipitation in the Mediterranean region: Observations since 1950 and projections for the 21st century. Geophysical Research Letters 36 (10). https://doi.org/10.1029/2009GL037956.
  • Luo, J., Zheng, Z., Li, T., He, S. 2020. Temporal variations in runoff and sediment yield associated with soil surface roughness under different rainfall patterns. Geomorphology 349, 106915. https://doi.org/10.1016/j.geomorph.2019. 106915.
  • Martin, P. 1999. Reducing flood risk from sediment-laden agricultural runoff using intercrop management techniques in northern France. Soil and Tillage Research 52 (3-4), 233-245. https://doi.org/10.1016/S0167-1987(99)00084-7.
  • Masselink, R.J., Heckmann, T., Temme, A.J., Anders, N.S., Gooren, H.P., Keesstra, S.D. 2017. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes 31 (1), 207-220. https://doi.org/10.1002/hyp.10993.
  • Mathbout, S., Lopez-Bustins, J.A., Royé, D., Martin-Vide, J., Bech, J., Rodrigo, F.S. 2018. Observed changes in daily precipitation extremes at annual timescale over the eastern Mediterranean during 1961–2012. Pure and Applied Geophysics 175 (11), 3875-3890. https://doi.org/10.1007/s00024-017-1695-7.
  • Moreno‐de las Heras, M., Nicolau, J.M., Merino‐Martín, L., Wilcox, B.P. 2010. Plot‐scale effects on runoff and erosion along a slope degradation gradient. Water Resources Research 46 (4). https://doi.org/10.1029/2009WR007875.
  • Nadal‐Romero, E., Cortesi, N., González‐Hidalgo, J.C. 2014. Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surface Processes and Landforms, 39 (4), 427-437. https://doi.org/10.1002/esp.3451.
  • Onda, Y., Gomi, T., Mizugaki, S., Nonoda, T., Sidle, R. C. 2010. An overview of the field and modelling studies on the effects of forest devastation on flooding and environmental issues. Hydrological Processes 24 (5), 527-534. https://doi.org/10.1002/hyp.7548.
  • Parida, B.R., Behera, S.N., Bakimchandra, O., Pandey, A.C., Singh, N. 2017. Evaluation of satellite-derived rainfall estimates for an extreme rainfall event over Uttarakhand, Western Himalayas. Hydrology 4 (2), 22. https://doi.org/10.3390/hydrology4020022.
  • Parsons, A.J., Brazier, R.E., Wainwright, J., Powell, D.M. 2006. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms 31(11), 1384-1393. https://doi.org/10.1002/esp.1345.
  • Peña-Angulo, D., Vicente-Serrano, S.M., Domínguez-Castro, F., Murphy, C., Reig, F., Tramblay, Y., Trigo, R.M., Luna, M.Y., Turco, M., Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera, M., El Kenawy, A. 2020. Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environmental Research Letters 15 (9), 094070.
  • Pisabarro, A. 2020. Snow cover as a morphogenic agent determining ground climate, landforms and runoff in the Valdecebollas massif, Cantabrian Mountains. Cuadernos de Investigación Geográfica 46 (1), 81-102. https://doi.org/10.18172/cig.3823.
  • Poesen, J.W., Hooke, J.M. 1997. Erosion, flooding and channel management in Mediterranean environments of southern Europe. Progress in Physical Geography 21 (2), 157-199. https://doi.org/10.1177/030913339702100201.
  • Ribes, A., Thao, S., Vautard, R., Dubuisson, B., Somot, S., Colin, J., Planton, S., Soubeyroux, J.M. 2019. Observed increase in extreme daily rainfall in the French Mediterranean. Climate Dynamics 52 (1-2), 1095-1114. https://doi.org/10.1007/s00382-018-4179-2.
  • Robinson, D.A., Blackman, J.D. 1990. Soil erosion and flooding: Consequences on land use policy and agricultural practice on the South Downs, East Sussex, UK. Land Use Policy 7 (1), 41-52. https://doi.org/10.1016/0264-8377(90)90053-2.
  • Rodrigo Comino, J., Keesstra, S.D., Cerdà, A. 2018a. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms 43 (10), 2193-2206. https://doi.org/10.1002/esp.4385.
  • Rodrigo-Comino, J., Keesstra, S., Cerdà, A. 2018b. Soil Erosion as an Environmental Concern in Vineyards: The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages, 4 (2), 31. https://doi.org/10.3390/beverages4020031.
  • Rodrigo-Comino, J., Senciales-González, J.M., Terol, E., Mora-Navarro, G., Gyasi-Agyei, Y., Cerdà, A. 2020. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler del Roure” Experimental Research in Eastern Spain. Atmosphere 11 (6), 551. https://doi.org/10.3390/atmos11060551.
  • Romero-Díaz, A., López Bermúdez, F., Belmonte Serrato, F., Barbera, G.G. 1998. Erosión y escorrentía en el campo experimental de "El Ardal" (Murcia). Nueve años de experiencias. Papeles de Geografía 27, 129-144.
  • Romero-Díaz, A., Ruiz-Sinoga, J.D., Robledano-Aymerich, F., Brevik, E.C., Cerdà, A. 2017. Ecosystem responses to land abandonment in Western Mediterranean Mountains. Catena 149, 824-835. https://doi.org/10.1016/j.catena.2016.08.013.
  • Romero‐Díaz, A., Belmonte‐Serrato, F., Ruiz‐Sinoga, J.D. 2010. The geomorphic impact of afforestations on soil erosion in Southeast Spain. Land Degradation & Development 21 (2), 188-195. https://doi.org/10.1002/ldr.946.
  • Ruiz-Sinoga, J.D., Díaz, A.R. 2010. Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology, 118 (3-4), 359-368. https://doi.org/10.1016/j.geomorph.2010.02.003.
  • Saco, P.M., Rodríguez, J.F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartmane, J., Rodrigo-Comino, J., Rossi, M. J. 2020. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 186, 104354. https://doi.org/10.1016/j.catena.2019.104354.
  • Saghafian, B., Farazjoo, H., Bozorgy, B., Yazdandoost, F. 2008. Flood intensification due to changes in land use. Water Resources Management 22 (8), 1051-1067. https://doi.org/10.1007/s11269-007-9210-z.
  • Salesa, D., Cerdà, A. 2019. Four-year soil erosion rates in a running-mountain trail in eastern Iberian Peninsula. Geographical Research Letters (Cuadernos de Investigación Geográfica) 45, 309-331. https://doi.org/10.18172/cig.3826.
  • Santos, J.C.N.D., Andrade, E.M.D., Medeiros, P.H.A., Guerreiro, M.J.S., Palacio, H.A.D.Q. 2017. Land use impact on soil erosion at different scales in the Brazilian semi-arid. Revista Ciência Agronômica 48 (2), 251-260. https://doi.org/10.5935/1806-6690.20170029.
  • Sarris, D., Christodoulakis, D., Koerner, C. 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology 13 (6), 1187-1200. https://doi.org/10.1111/j.1365-2486.2007.01348.x.
  • Serrano‐Notivoli, R., Beguería, S., Saz, M.A., de Luis, M. 2018. Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology 38 (11), 4211-4224. https://doi.org/10.1002/joc.5562.
  • Sibley, A. 2010. Analysis of extreme rainfall and flooding in Cumbria 18-20 November 2009. Weather 65 (11), 287-292. https://doi.org/10.1002/wea.672.
  • Smets, T., Poesen, J., Knapen, A. 2008. Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth-Science Reviews 89 (1-2), 1-12. https://doi.org/10.1016/j.earscirev.2008.04.001.
  • Smith, J.A., Baeck, M.L., Ntelekos, A.A., Villarini, G., Steiner, M. 2011. Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resources Research 47 (4). https://doi.org/10.1029/2010WR010190.
  • Smith, J.A., Baeck, M.L., Zhang, Y., Doswell III, C.A. 2001. Extreme rainfall and flooding from supercell thunderstorms. Journal of Hydrometeorology 2 (5), 469-489. https://doi.org/10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2.
  • Takken, I., Jetten, V., Govers, G., Nachtergaele, J., Steegen, A. 2001. The effect of tillage-induced roughness on runoff and erosion patterns. Geomorphology 37 (1-2), 1-14. https://doi.org/10.1016/S0169-555X(00)00059-3.
  • Tullberg, J.N., Ziebarth, P.J., Li, Y. 2001. Tillage and traffic effects on runoff. Soil Research 39 (2), 249-257. https://doi.org/10.1071/SR00019.
  • Vicente-Serrano, S.M., González-Hidalgo, J.C., de Luis, M., Raventós, J. 2004. Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Climate Research 26 (1), 5-15. https://doi.org/10.3354/cr026005.
  • Wang, L., Dalabay, N., Lu, P., Wu, F. 2017. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil and Tillage Research 166, 147-156. https://doi.org/10.1016/j.still.2016.09.007.
  • Wilkinson, M.E., Quinn, P.F., Welton, P. 2010. Runoff management during the September 2008 floods in the Belford catchment, Northumberland. Journal of Flood Risk Management 3 (4), 285-295. https://doi.org/10.1111/j.1753-318X.2010.01078.x.
  • Wu, J., Liu, H., Wei, G., Song, T., Zhang, C., Zhou, H. 2019. Flash flood forecasting using support vector regression model in a small mountainous catchment. Water 11 (7), 1327. https://doi.org/10.3390/w11071327.
  • Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H. R., Zakizadeh, H. R., Tabibian, S. 2018. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 304, 30-39. https://doi.org/10.1016/j.geomorph.2017.12.034.
  • Yousefi, S., Pourghasemi, H.R., Rahmati, O., Keesstra, S., Emami, S. N., Hooke, J. 2020. Geomorphological change detection of an urban meander loop caused by an extreme flood using remote sensing and bathymetry measurements (a case study of Karoon River, Iran). Journal of Hydrology, 125712. https://doi.org/10.1016/j.jhydrol.2020.125712.
  • Yu, F., Harbor, J.M. 2019. The effects of topographic depressions on multiscale overland flow connectivity: A high‐resolution spatiotemporal pattern analysis approach based on connectivity statistics. Hydrological Processes 33 (10), 1403-1419. https://doi.org/10.1016/j.jhydrol.2020.125712.
  • Zhang, X., Lin, P., Chen, H., Yan, R., Zhang, J., Yu, Y., Liu, E., Yang, Y., Zhao, W., Lv, D., Lei, S., Liu, B., Yang, X., Li, Z. 2018. Understanding land use and cover change impacts on run‐off and sediment load at flood events on the Loess Plateau, China. Hydrological Processes 32 (4), 576-589. https://doi.org/10.1002/hyp.11444.
  • Zhao, L., Hou, R., Wu, F., Keesstra, S. 2018. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil and Tillage Research 179, 47-53. https://doi.org/10.1016/j.still.2018.01.009.
  • Ziegler, A.D., Sutherland, R.A., Giambelluca, T.W. 2001. Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand. Geomorphology 41 (4), 249-262. https://doi.org/10.1016/S0169-555X(01)00054-X.