An interdisciplinary approach to Liouville's equation

  1. Julia Calatayud 1
  2. Juan Carlos Cortés 1
  3. Marc Jornet 1
  1. 1 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

Revue:
Boletín de la Sociedad Puig Adam de profesores de matemáticas

ISSN: 1135-0261

Année de publication: 2020

Número: 110

Pages: 90-100

Type: Article

D'autres publications dans: Boletín de la Sociedad Puig Adam de profesores de matemáticas

Résumé

In this paper we propose a new approach for Liouville's equation in the setting of random ordinary differential equations, by employing the mathematical theory of fluid mechanics. The uncertainty in the governing differential equation arises from the initial condition. The timedependent solution is a differentiable stochastic process with a probability density function. The ramdom differential equation is interpreted as the Euler's equations of motion for a particle in a fluid with random initial position. By computing the outflux of probability per unit surface area and unit time across the boundary of any fixed region and by using equation for the probability density function (Liouville's equation). Our approach illustrates a nice and pedagogical connection between probability theory and vector calculus applied to fluis mechanics