Nuevas metodologías para la producción de anticuerpos recombinantes en plantas.

  1. Huet Trujillo, Estefanía
Dirigida por:
  1. Antonio Granell Richart Director/a
  2. Diego Vicente Orzáez Calatayud Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 20 de septiembre de 2017

Tribunal:
  1. Ismael Mingarro Muñoz Presidente
  2. María José Bañuls Polo Secretario/a
  3. María Coca López Vocal

Tipo: Tesis

Resumen

Genetic engineering has allowed the design and production of recombinant antibodies (rmAbs) in plants. Nowadays, rmAbs are used in the treatment of a wide range of pathologies such as infectious diseases, inflammatory diseases and cancer, making rmAbs an important group of biomolecules within the pharmaceutical and biotechnology industry. By the time this study was started, the immunoglobulin G (IgG) was the antibody isotype predominantly expressed in plants. In recent years Modular DNA cloning technology has facilitated antibody engineering, with the development and expression of new rmAbs formats. However, there is hardly any study where different antibody formats are produced and compared in terms of yield and neutralizing capacity. Therefore, the starting point of the first chapter of this thesis is a comparative study where five different formats of the same commercial rmAb (Infliximab) against the human cytokine Tumor Necrosis Factor (TNF-¿) were expressed and compared. The results obtained in Chapter 1 demonstrate that both the isotype and the structure of the chosen rmAb influence the yield and the neutralizing capacity of rmAb. The expression of new antibody formats not only refers to the antibody isotype or structure; the format also refers to the combination of antibody idiotypes, leading to the production of oligo or polyclonal antibodies. Therefore, the possibility of co-expressing different monoclonal antibodies simultaneously in plants (creating oligoclonal or polyclonal formats) was raised. In the second chapter of this thesis, the expression of three rmAbs against the Ebola virus glycoprotein was studied. The three rmAbs were transiently expressed in N. benthamiana individually, by establishing separated production lines; in parallel, all three rmAbs were also co-expressed simultaneously in the same production line. The results obtained in this chapter demonstrated that the individual expression of rmAbs is feasible. However, when all three rmAbs are co-expressed, a drastic decrease in the binding of the antibody to the antigen was observed due to chain shuffling, as each heavy chain (HC) can be bound to any light chain (LC) other than its cognate chain, giving rise to an antibody cocktail with lower activity. With the objective of developing a method that allows co-expression of several rmAb in a single production line, we next proposed to exploit the viral interference phenomenon (also known as superinfection exclusion, SE). The results shown in Chapter three demonstrate that the production of an oligoclonal cocktail composed of 36 rmAbs in plants was possible using a viral expression system showing SE. The data obtained in this chapter showed that the resulting oligoclonal cocktail was active and capable of neutralizing toxic activities of the venom of the snake Bothrops asper in vitro and in vivo, wich was used as a model for studying the efficacy of the oligoclonal antibodies produced. The results of this thesis confirm and support the use of plants as platforms for the expression of alternative formats of antibodies.