Documento de consenso de un grupo de expertos de la Sociedad Española de Arteriosclerosis (SEA) sobre el uso clínico de la resonancia magnética nuclear en el estudio del metabolismo lipoproteico (Liposcale)

  1. Pintó, Xavier
  2. Masana, Luis
  3. Civeira, Fernando
  4. Real, José 1
  5. Ibarretxe, Daiana
  6. Candas, Beatriz 2
  7. Puzo, José
  8. Díaz, José Luis 3
  9. Amigó, Núria
  10. Esteban, Margarita
  11. Valdivielso, Pedro
  1. 1 Servicio Endocrinología, CIBERDEM. Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, España
  2. 2 Bioquímica Especial y Biología Molecular, Laboratori Clínic. Hospital Universitario de Bellvitge, Barcelona, España
  3. 3 Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España
Revista:
Clínica e investigación en arteriosclerosis

ISSN: 0214-9168 1578-1879

Año de publicación: 2020

Volumen: 32

Número: 5

Páginas: 219-229

Tipo: Artículo

DOI: HTTPS://DOI.ORG/10.1016/J.ARTERI.2020.04.004 PMID: 32798078 SCOPUS: 2-s2.0-85089298637 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Clínica e investigación en arteriosclerosis

Resumen

La evaluación y prevención del riesgo cardiovascular (RCV) que persiste en los pacientes con dislipidemia a pesar del tratamiento y de haber alcanzado los objetivos específicos de la concentración plasmática de colesterol unido a lipoproteínas de baja densidad (c-LDL) es un reto clínico en la actualidad, y sugiere que los biomarcadores lipídicos convencionales resultan insuficientes para una evaluación precisa del RCV. Más allá de su contenido lipídico, existen otras características propias de las partículas lipoproteicas que determinan su potencial aterogénico y su influencia en el RCV. Sin embargo, dichas características adicionales no pueden ser analizadas por las técnicas utilizadas habitualmente en los laboratorios clínicos. La espectroscopia por resonancia magnética nuclear (RMN) es una técnica que permite un análisis detallado de la cantidad, composición y tamaño de las lipoproteínas y proporciona información más detallada del estado del metabolismo lipídico y del RCV en los pacientes dislipémicos. En este artículo un grupo de lipidólogos de la Sociedad Española de Arteriosclerosis revisa la evidencia existente sobre los mecanismos aterogénicos de las partículas lipoproteicas y describen el fundamento técnico y la interpretación de los perfiles lipoproteicos obtenidos mediante RMN, haciendo especial referencia al test disponible en España (Liposcale®). Asimismo, se definen los principales perfiles de pacientes en los que dicho análisis aportaría una información de mayor interés clínico, los cuales son: a) sospecha de discordancia entre las concentraciones de lípidos y el número de partículas, situación frecuente en la diabetes, la obesidad, el síndrome metabólico y la hipertrigliceridemia; b) enfermedad cardiovascular aterotrombótica (ECVA) precoz o recurrente sin factores de RCV que la justifiquen; c) trastornos lipídicos infrecuentes o complejos como las concentraciones extremas de c-HDL, y d) situaciones clínicas en las que las técnicas analíticas clásicas no pueden aplicarse, como los valores de c-LDL muy bajos.

Referencias bibliográficas

  • Townsend, N., Nichols, M., Scarborough, P., Rayner, M., Cardiovascular disease in Europe–epidemiological update 2015. Eur Heart J 36 (2015), 2696–2705.
  • Piepoli, M.F., Hoes, A.W., Agewall, S., Albus, C., Brotons, C., Catapano, A.L., et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 37 (2016), 2315–2381.
  • Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 41 (2020), 111–118.
  • Ferrari, R., Aguiar, C., Alegria, E., Bonadonna, R.C., Cosentino, F., Elisaf, M., et al. Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia. Eur Heart J Suppl. 18 (2016), C2–C12.
  • Fruchart, J.-C., Davignon, J., Hermans, M.P., Al-Rubeaan, K., Amarenco, P., Assmann, G., et al. Residual macrovascular risk in 2013: what have we learned?. Cardiovasc Diabetol., 13, 2014, 26.
  • Grupo de trabajo de Dislipemia Aterogénica de la Sociedad Española de Arteriosclerosis y Grupo Europeo de Expertos. Recomendaciones prácticas para el manejo del riesgo cardiovascular asociado a la dislipemia aterogénica, con especial atención al riesgo residual. Adaptación española de un Consenso Europeo de Expertos. Clin Investig Arterioscler 29 (2017), 168–177.
  • Fruchart, J.-C., Sacks, F., Hermans, M.P., Assmann, G., Brown, W.V., Ceska, R., et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol. 102 (2008), 1K–34K.
  • Ginsberg, H.N., Elam, M.B., Lovato, L.C., Crouse, J.R., Leiter, L.A., et al., ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 362 (2010), 1563–1574.
  • Borén, J., Williams, K.J., The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 27 (2016), 473–483.
  • Rosenson, R.S., Underberg, J.A., Systematic review: Evaluating the effect of lipid-lowering therapy on lipoprotein and lipid values. Cardiovasc Drugs Ther. 27 (2013), 465–479.
  • Mallol, R., Amigó, N., Rodríguez, M.A., Heras, M., Vinaixa, M., Plana, N., et al. Liposcale: a novel advanced lipoprotein test based on 2 D diffusion-ordered 1 H NMR spectroscopy. J Lipid Res. 56 (2015), 737–746.
  • Salter, A.M., Brindley, D.N., The biochemistry of lipoproteins. J Inherit Metab Dis. 11:Suppl. 1 (1988), 4–17.
  • Morita, S., Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol Pharm Bull. 39 (2016), 1–24.
  • Chan, D.C., Barrett, P.H.R., Watts, G.F., The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia. Best Pract Res Clin Endocrinol Metab. 28 (2014), 369–385.
  • Soran, H., Schofield, J.D., Adam, S., Durrington, P.N., Diabetic dyslipidaemia. Curr Opin Lipidol. 27 (2016), 313–322.
  • Otvos, J.D., Mora, S., Shalaurova, I., Greenland, P., Mackey, R.H., Goff, D.C., Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J Clin Lipidol. 5 (2011), 105–113.
  • Toth, P.P., Grabner, M., Punekar, R.S., Quimbo, R.A., Cziraky, M.J., Jacobson, T.A., Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets. Atherosclerosis. 235 (2014), 585–591.
  • Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al. (eds). Endotext. MDText.com, Inc.: South Dartmouth (MA), 2000 [consultado 29 Ago 2019]. Disponible en http://www.ncbi.nlm.nih.gov/books/NBK343489/.
  • Tabas, I., Williams, K.J., Borén, J., Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 116 (2007), 1832–1844.
  • Nordestgaard, B.G., Nielsen, L.B., Atherosclerosis and arterial influx of lipoproteins. Curr Opin Lipidol. 5 (1994), 252–257.
  • Williams, K.J., Tabas, I., The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 15 (1995), 551–561.
  • Sniderman, A.D., Thanassoulis, G., Glavinovic, T., Navar, A.M., Pencina, M., Catapano, A., et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4 (2019), 1287–1295.
  • Carmena, R., Duriez, P., Fruchart, J.-C., Atherogenic lipoprotein particles in atherosclerosis. Circulation. 109 (2004), III2–III7.
  • Langlois, M.R., Chapman, M.J., Cobbaert, C., Mora, S., Remaley, A.T., Ros, E., et al. Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem. 64 (2018), 1006–1033.
  • März, W., Kleber, M.E., Scharnagl, H., Speer, T., Zewinger, S., Ritsch, A., et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 106 (2017), 663–675.
  • Salazar, A., Maña, J., Fiol, C., Hurtado, I., Argimon, J.M., Pujol, R., et al. Influence of serum amyloid A on the decrease of high density lipoprotein-cholesterol in active sarcoidosis. Atherosclerosis. 152 (2000), 497–502.
  • Sacks, F.M., Campos, H., Clinical review 163: Cardiovascular endocrinology: Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 88 (2003), 4525–4532.
  • Chowaniec, Z., Skoczyńska, A., Plasma lipid transfer proteins: The role of PLTP and CETP in atherogenesis. Adv Clin Exp Med. 27 (2018), 429–436.
  • Santamarina-Fojo, S., González-Navarro, H., Freeman, L., Wagner, E., Nong, Z., Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 24 (2004), 1750–1754.
  • Cantey, E.P., Wilkins, J.T., Discordance between lipoprotein particle number and cholesterol content: an update. Curr Opin Endocrinol Diabetes Obes. 25 (2018), 130–136.
  • Mora, S., Buring, J.E., Ridker, P.M., Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation. 129 (2014), 553–561.
  • Tehrani, D.M., Zhao, Y., Blaha, M.J., Mora, S., Mackey, R.H., Michos, E.D., et al. Discordance of low-density lipoprotein and high-density lipoprotein cholesterol particle versus cholesterol concentration for the prediction of cardiovascular disease in patients with metabolic syndrome and diabetes mellitus (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 117 (2016), 1921–1927.
  • Cromwell, W.C., Otvos, J.D., Keyes, M.J., Pencina, M.J., Sullivan, L., Vasan, R.S., et al. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study - implications for LDL management. J Clin Lipidol. 1 (2007), 583–592.
  • Hoogeveen, R.C., Gaubatz, J.W., Sun, W., Dodge, R.C., Crosby, J.R., Jiang, J., et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 34 (2014), 1069–1077.
  • Shiffman, D., Louie, J.Z., Caulfield, M.P., Nilsson, P.M., Devlin, J.J., Melander, O., LDL subfractions are associated with incident cardiovascular disease in the Malmö Prevention Project Study. Atherosclerosis. 263 (2017), 287–292.
  • Mora, S., Caulfield, M.P., Wohlgemuth, J., Chen, Z., Superko, H.R., Rowland, C.M., et al. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial. Circulation. 132 (2015), 2220–2229.
  • Pichler, G., Amigo, N., Tellez-Plaza, M., Pardo-Cea, M.A., Dominguez-Lucas, A., Marrachelli, V.G., et al. LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study. Int J Cardiol. 264 (2018), 172–178.
  • Urbina, E.M., McCoy, C.E., Gao, Z., Khoury, P.R., Shah, A.S., Dolan, L.M., et al. Lipoprotein particle number and size predict vascular structure and function better than traditional lipids in adolescents and young adults. J Clin Lipidol. 11 (2017), 1023–1031.
  • Varbo, A., Benn, M., Tybjærg-Hansen, A., Jørgensen, A.B., Frikke-Schmidt, R., Nordestgaard, B.G., Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 61 (2013), 427–436.
  • Jørgensen, A.B., Frikke-Schmidt, R., West, A.S., Grande, P., Nordestgaard, B.G., Tybjærg-Hansen, A., Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 34 (2013), 1826–1833.
  • Varbo, A., Freiberg, J.J., Nordestgaard, B.G., Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 61 (2015), 533–543.
  • Wulff, A.B., Nordestgaard, B.G., Tybjærg-Hansen, A., APOC3 loss-of-function mutations, remnant cholesterol low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol. 38 (2018), 660–668.
  • Friedewald, W.T., Levy, R.I., Fredrickson, D.S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 18 (1972), 499–502.
  • Catapano, A.L., Graham, I., de Backer, G., Wiklund, O., Chapman, M.J., Drexel, H., et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 37 (2016), 2999–3058.
  • Nauck, M., Warnick, G.R., Rifai, N., Methods for measurement of LDL-cholesterol: a critical assessment of direct measurement by homogeneous assays versus calculation. Clin Chem. 48 (2002), 236–254.
  • Ridker, P.M., Rifai, N., Cook, N.R., Bradwin, G., Buring, J.E., Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA. 294 (2005), 326–333.
  • Boekholdt, S.M., Arsenault, B.J., Mora, S., Pedersen, T.R., LaRosa, J.C., Nestel, P.J., et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 307 (2012), 1302–1309.
  • Holmes, M.V., Millwood, I.Y., Kartsonaki, C., Hill, M.R., Bennett, D.A., Boxall, R., et al. Lipids lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 71 (2018), 620–632.
  • Anderson, T.J., Grégoire, J., Pearson, G.J., Barry, A.R., Couture, P., Dawes, M., et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 32 (2016), 1263–1282.
  • Jellinger, P.S., Handelsman, Y., Rosenblit, P.D., Bloomgarden, Z.T., Fonseca, V.A., Garber, A.J., et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease - executive summary. Endocr Pract. 23 (2017), 479–497.
  • Cole, T.G., Contois, J.H., Csako, G., McConnell, J.P., Remaley, A.T., et al., AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 59 (2013), 752–770.
  • Boekholdt, S.M., Arsenault, B.J., Hovingh, G.K., Mora, S., Pedersen, T.R., Larosa, J.C., et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation. 128 (2013), 1504–1512.
  • Redgrave, T.G., Roberts, D.C., West, C.E., Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 65 (1975), 42–49.
  • Mora, S., Advanced lipoprotein testing and subfractionation are not (yet) ready for routine clinical use. Circulation. 119 (2009), 2396–2404.
  • Toshima, G., Iwama, Y., Kimura, F., Matsumoto, Y., Miura, M., Takahashi, J., et al. LipoSEARCH: Analytical GP-HPLC method for lipoprotein profiling and its applications., 2013.
  • Warnick, G.R., McNamara, J.R., Boggess, C.N., Clendenen, F., Williams, P.T., Landolt, C.C., Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med. 26 (2006), 803–846.
  • Caulfield, M.P., Li, S., Lee, G., Blanche, P.J., Salameh, W.A., Benner, W.H., et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 54 (2008), 1307–1316.
  • Caulfield, M.P., Li, S., Lee, G., Blanche, P.A., Salameh, W.A., Benner, W.H., et al. In Reply. Clin Chem. 54 (2008), 2088–2089.
  • Johnson, C.S., Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Mag Res Sp. 34 (1999), 203–256.
  • Mackey, R.H., Greenland, P., Goff, D.C., Lloyd-Jones, D., Sibley, C.T., Mora, S., High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 60 (2012), 508–516.
  • Würtz, P., Raiko, J.R., Magnussen, C.G., Soininen, P., Kangas, A.J., Tynkkynen, T., et al. High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur Heart J. 33 (2012), 2307–2316.
  • Mora, S., Glynn, R.J., Ridker, P.M., High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 128 (2013), 1189–1197.
  • Masana, L., Ibarretxe, D., Heras, M., Cabré, A., Ferré, R., Merino, J., et al. Substituting non-HDL cholesterol with LDL as a guide for lipid-lowering therapy increases the number of patients with indication for therapy. Atherosclerosis. 226 (2013), 471–475.