Es pot estandarditzar la vida?reptes actuals en l’estandardització de la biologia

  1. Juli
  2. Manel Porcar
Revista:
Mètode: Revista de difusió de la investigació

ISSN: 1133-3987

Año de publicación: 2020

Título del ejemplar: Estàndars. Els maons de la complexitat

Volumen: 2

Número: 105

Páginas: 52-59

Tipo: Artículo

Otras publicaciones en: Mètode: Revista de difusió de la investigació

Resumen

El concepte d’estàndard ens remet poderosament a la idea de màquines, indústries, dispositius elèctrics o mecànics, vehicles o mobles. De fet, la nostra civilització tecnològica no seria possible –almenys en els termes en què està estructurada avui dia– sense components universals i fiables l’ús generalitzat dels quals permet aconseguir costos competitius i assegurar que els productes siguen més robustos i els seus components, més intercanviables. Per exemple, un caragol de l’Ikea es pot utilitzar en tota una sèrie de mobles estructuralment diferents, i una aplicació es pot executar en molts telèfons intel·ligents diferents. El concepte mateix d’estandardització està vinculat amb la revolució industrial i la producció massiva de béns en cadenes de muntatge. La pregunta que tractarem de respondre en aquest document és fins a quin punt es poden aconseguir estàndards i implementar un procés d’estandardització en l’àmbit biològic.

Referencias bibliográficas

  • Amos, M., & Goñi-Moreno, A. (2018). Cellular computing and synthetic biology. En S. Stepney, S. Rasmussen & M. Amos (Eds.), Computational Matter (pp. 93–110). Cham: Springer.
  • Arnold, F. H. (2019) Innovation by evolution: Bringing new chemistry to life (discurs d’acceptació del Premi Nobel). Angewandte Chemie International Edition, 58(41), 14420–14426. doi: 10.1002/anie.201907729
  • D’Ari, R., & Casadesús, J. (1998). Underground metabolism. BioEssays, 20(2), 181–186. doi: 10.1002/(SICI)1521-1878(199802)20:2%3C181::AID-BIES10%3E3.0.CO;2-0
  • De Crécy-Lagard, V., Haas, D., & Hanson, A. D. (2018). Newly-discovered enzymes that function in metabolite damage-control. Current Opinion in Chemical Biology, 47, 101–108. doi: 10.1016/j.cbpa.2018.09.014
  • Ellens, K. W., Christian, N., Singh, C., Satagopam, V. P., May, P., & Linster, C. L. (2017). Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Research, 45(20), 11495–11514. doi: 10.1093/nar/gkx937
  • Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338. doi: 10.1038/35002125
  • Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186. doi: 10.1126/science.1070919
  • Khersonsky, O., & Tawfik, D. S. (2010). Enzyme promiscuity: A mechanistic and evolutionary perspective. Annual Review of Biochemistry, 79, 471–505. doi: 10.1146/annurev-biochem-030409-143718
  • Kittleson, J. T., Wu, G. C., & Anderson, J. C. (2012). Successes and failures in modular genetic engineering. Current Opinion in Chemical Biology, 16(3-4), 329–336. doi: 10.1016/j.cbpa.2012.06.009
  • Kizer, L., Pitera, D. J., Pfleger, B. F., & Keasling, J. D. (2008). Application of functional genomics to pathway optimization for increased isoprenoid production. Applied and Environmental Microbiology, 74(10), 3229–3241. doi: 10.1128/AEM.02750-07
  • Martínez-García, E., Goñi-Moreno, A., Bartley, B., McLaughlin, J., Sánchez-Sampedro, L., Pascual Del Pozo, H., … De Lorenzo, V. (2020). SEVA 3.0: An update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Research, 48(D1), D1164–D1170. doi: 10.1093/nar/gkz1024
  • Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLOS Computational Biology, 14(12), e1006258. doi: 10.1371/journal.pcbi.1006258
  • Nicholson, D. J. (2019). Is the cell really a machine? Journal of Theoretical Biology, 477, 108–126. doi: 10.1016/j.jtbi.2019.06.002
  • Porcar, M., Latorre, A., & Moya, A. (2013). What symbionts teach us about modularity. Frontiers in Bioengineering and Biotechnology, 1, 14. doi: 10.3389/fbioe.2013.00014
  • Vilanova, C., & Porcar, M. (2014). iGEM 2.0–refoundations for engineering biology. Nature Biotechnology, 32, 420–424. doi: 10.1038/nbt.2899
  • Vilanova, C., & Porcar, M. (2019). Synthetic microbiology as a source of new enterprises and job creation: A Mediterranean perspective. Microbial Biotechnology, 12, 8–10. doi: 10.1111/1751-7915.13326
  • Vilanova, C., Tanner, K., Dorado-Morales, P., Villaescusa, P., Chugani, D., Frías, A., ... Porcar, M. (2015). Standards not that standard. Journal of Biological Engineering, 9, 17. doi: 10.1186/s13036-015-0017-9