Manufactured lifeThe scientific and social challenges of synthetic biology

  1. Manuel Porcar
  2. Juli Peretó
Aldizkaria:
Mètode Science Studies Journal: Annual Review

ISSN: 2174-3487 2174-9221

Argitalpen urtea: 2020

Zenbakien izenburua: Shades of Science

Zenbakia: 10

Orrialdeak: 65-72

Mota: Artikulua

DOI: 10.7203/METODE.10.13229 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Mètode Science Studies Journal: Annual Review

Laburpena

Since biology became secularised and the molecular scrutiny of life began, the possibility of artificially synthesising living cells in a laboratory became a tangible possibility. Contemporary synthetic biology aspires to design and manufacture new forms of life to obtain social and economic benefits. However, we cannot rule out the possibility that the creation of synthetic life forms may also bring scientific rewards in terms of a greater understanding of biological complexity, which we would not be able to access through analytical means. It is clear, therefore, that the term synthetic biology raises expectations, but it is no less true that it also causes concern. This article starts with a critique of the identification of cells as machines and discusses the current scope of synthetic biology and efforts to standardise it. We also outline some of the social implications of attempts to manufacture life.

Erreferentzia bibliografikoak

  • Creager, A. N. H. (2002). The life of a virus. Tobacco mosaic virus as an experimental model, 1930-1965. Chicago: The University of Chicago Press.
  • De Lorenzo, V. (2011). Beware of metaphors: Chasses and orthogonality in synthetic biology. Bioengineered Bugs, 2(1), 3–7. doi: 10.4161/bbug.2.1.13388
  • De Lorenzo, V. (2018). Evolutionary tinkering vs. rational engineering in the times of synthetic biology. Life Sciences, Society and Policy, 14(1), 18. doi: 10.1186/s40504-018-0086-x
  • Douglas, T., Powell, R., & Savulescu, J. (2013). Is the creation of artificial life morally significant? Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 688–696. doi: 10.1016/j.shpsc.2013.05.016
  • Keller, E. (2002). Making sense of life. Explaining biological development with models, metaphors, and machines. Cambridge: Harvard University Press.
  • Konig, H., Dorado-Morales, P., & Porcar, M. (2015). Responsibility and intellectual property in synthetic biology: A proposal for using Responsible Research and Innovation as a basic framework for intellectual property decisions in synthetic biology. EMBO Reports, 16(9), 1055–1059. doi: 10.15252/embr.201541048
  • Leduc, S. (1912). La biologie synthétique. Paris: A. Poinat.
  • Loeb, J. (1904). The recent development of biology. Science, 20(519), 777–786. doi: 10.1126/science.20.519.777
  • Loeb, J. (1906). The dynamics of living matter. New York: Columbia University Press.
  • Nicholson, D. J. (2014). The machine conception of the organism in development and evolution: A critical analysis. Studies in History and Philosophy of Biological and Biomedical Sciences, 48, 162–174. doi: 10.1016/j.shpsc.2014.08.003
  • Peretó, J. (2016). Erasing borders: A brief chronicle of early synthetic biology. Journal of Molecular Evolution, 83(5–6), 176–183. doi: 10.1007/s00239-016-9774-4
  • Peretó, J., & Català, J. (2012). Darwinism and the origin of life. Evolution: Education and Outreach, 5(3), 337–341. doi: 10.1007/s12052-012-0442-x
  • Porcar, M., & Peretó, J. (2016). Nature versus design: Synthetic biology or how to build a biological non-machine. Integrative Biology: Quantitative Biosciences from Nano to Macro, 8(4), 451–455. doi: 10.1039/c5ib00239g
  • Porcar, M., & Peretó, J. (2018). Creating life and the media: Translations and echoes. Life Sciences, Society and Policy, 14(1), 19. doi: 10.1186/s40504-018-0087-9
  • Tawfik, D. S. (2010). Messy biology and the origins of evolutionary innovations. Nature Chemical Biology, 6(10), 692–696. doi: 10.1038/nchembio.441
  • Turney, J. (1995). Life in the laboratory: Public responses to experimental biology. Public Understanding of Science, 4(2), 153–176. doi: 10.1088/0963-6625/4/2/004
  • Valverde, S., Porcar, M., Peretó, J., & Solé, R. V. (2016). The software crisis of synthetic biology. BioRxiv. doi: 10.1101/041640