La importancia de la percepción del valor del tiempo para matricularse en los másteres onlineuna ampliación del Modelo de Aceptación de Tecnología
- Mohammad Reza Mazandarani 1
- Marcelo Royo Vela 1
-
1
Universitat de València
info
ISSN: 0212-1867
Datum der Publikation: 2019
Nummer: 164
Seiten: 475-514
Art: Artikel
Andere Publikationen in: Esic market
Zusammenfassung
Objetivo: El objetivo principal de esta investigación es obtener una mejor comprensión del impacto de la percepción del valor del tiempo sobre la intención de los solicitantes de cursar un máster online. Para ello, este constructo se agrega al Modelo de Aceptación de Tecnología (TAM). Diseño/metodología/enfoque: Los datos se recopilaron a través de encuestas online y personales de una muestra de 147 personas que estaban interesadas en continuar su educación superior. Los datos obtenidos se analizan a través del modelo de ecuaciones estructurales. Resultados: Los resultados muestran que el valor percibido del tiempo se relaciona significativamente con la facilidad de uso y la utilidad percibida que, a su vez, muestran un efecto significativo sobre la actitud hacia la inscripción. También la actitud hacia la inscripción se relaciona positiva y significativamente con el valor percibido del tiempo. Por otro lado, la utilidad percibida no muestra una relación significativa con la intención de inscribirse y cursar un máster online. Limitaciones/implicaciones de la investigación: Este documento solamente examina la percepción del valor del tiempo antes de empezar un máster online. Lógicamente, esta percepción puede cambiar después de comenzar los cursos. Además, pueden existir más factores que no se mencionan en este artículo y que pueden influir en la intención hacia esta forma de educación superior. Implicaciones prácticas: Esta investigación puede ayudar a los diseñadores de estos cursos a comprender la percepción del valor del tiempo de los solicitantes antes de comenzar un máster online y así ayudarles a planear con éxito sus futuras estrategias de marketing. Originalidad/valor: Este artículo demuestra el efecto de los factores motivadores de los solicitantes para la inscripción en un máster online mediante el análisis de la importancia de ahorrar, administrar y tener más tiempo libre.
Bibliographische Referenzen
- Abdullah, F., y Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. https://doi.org/10.1016/j. chb.2015.11.036
- Al-Ammary, J. H., Al-Sherooqi, A. K., y Al-Sherooqi, H. K. (2014). The acceptance of social networking as a learning tools at University of Bahrain. International Journal of Information and Education Technology, 4(2), 208. https://doi. org/10.7763/IJIET.2014.V4.400
- Anderson, J. C., y Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411. https://doi.org/10.1037/0033-2909.103.3.411
- Ajzen, I. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs.
- Barclay, C., y Osei-Bryson, K. M. (2012). An Analysis of Students’ Perceptions and Attitudes to Online Learning Use in Higher Education in Jamaica: An Extension of TAM. Proceedings Annual Workshop of the AIS special Interest Group for ICT in Global Development. https://aisel.aisnet.org/cgi/viewcontent.cgi
- Browne, M. W., y Cudeck, R. (1993). Alternative ways of assessing model fit. Testing structural equation models. Sage focus editions, 154, 136-136. journals.sagepub. com/doi/10.1177/0049124192021002005
- Carmines, E. G., y Zeller, R. A. (1979). Reliability and validity assessment (vol. 17). Sage publications. https://books.google.es/books
- Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336. http://www. researchgate.net/publication/232569511
- Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results (doctoral dissertation, Massachusetts Institute of Technology). https://dspace.mit.edu/bitstream/ handle/1721.1/15192/14927137-MIT.pdf
- Davis, F. D. , (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. https://doi.org/10.2307/249008
- Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
- Elloumi, F. (2004). Value chain analysis: A strategic approach to online learning. Theory and practice of online learning, 61. citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.131.9849&type=pdf
- Fathema, N., Shannon, D., y Ross, M. (2015). Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions. Journal of Online Learning & Teaching, 11(2). http://jolt.merlot.org/Vol11no2/Fathema_0615.pdf
- Fishbein, M., y Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. https://philarchive.org/archive/FISBAI
- Fornell, C., y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
- Goodyear, P. (2006). Technology and the articulation of vocational and academic interests: reflections on time, space and e-learning. Studies in Continuing Education, 28(2), 83-98. https://doi.org/10.1080/01580370600750973
- Heckler, C. E. (1996). A Step-by-Step Approach to Using the SAS™ System for Factor Analysis and Structural Equation Modeling. https://doi.org/10.1080/004017 06.1996.10484524
- Hu, L. T., y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. https://doi. org/10.1080/10705519909540118
- Kentnor, H. E. (2015). Distance education and the evolution of online learning in the United States. Curriculum and Teaching Dialogue, 17(1), 21-34. https://digitalcommons.du.edu/law_facpub/24/
- Lado, N., Martos, M., y Nelson, J. (2015). Motivational and Attitudinal Predictors of Interest in and Intention of Enrolling in Online Masters. Assessing the Different Roles of Marketing Theory and Practice in the Jaws of Economic Uncertainty (pp. 217-221). Springer, Cham. https://link.springer.com/ book/10.1007/978-3-319-11845-1
- Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516. https://doi.org/10.1016/j.compedu.2009.09.002
- Lee, M. K., Cheung, C. M., y Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information & Management, 42(8), 1095-1104. https://doi.org/10.1016/j.im.2003.10.007
- Lee, Y. C. (2006). An empirical investigation into factors influencing the adoption of an e-learning system. Online information review, 30(5), 517-541. https://doi. org/10.1108/14684520610706406
- Liu, I. F., Chen, M. C., Sun, Y. S., Wible, D., y Kuo, C. H. (2010). Extending the TAM model to explore the factors that affect Intention to Use an Online Learning Community. Computers & Education, 54(2), 600-610. https://doi.org/10.1016/j. compedu.2009.09.009
- Lytras, M., y Pouloudi, A. (2001). E-learning: Just a Waste of Time. AMCIS 2001 Proceedings, 43. http://aisel.aisnet.org/amcis2001/43
- McDonald, R. P., y Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological methods, 7(1), 64. http://dx.doi. org/10.1037/1082-989X.7.1.64
- Moore, G. C., y Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222. https://doi.org/10.1287/isre.2.3.192
- Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. Educational technology & society, 12(3), 150-162. https://www.jstor.org/stable/jeductechsoci.12.3.150
- Park, Y., Son, H., y Kim, C. (2012). Investigating the determinants of construction professionals’ acceptance of web-based training: An extension of the technology acceptance model. Automation in construction, 22, 377-386. https://doi. org/10.1016/j.autcon.2011.09.016
- Piccoli, G., Ahmad, R., y Ives, B. (2001). Web-based virtual learning environments: A research framework and a preliminary assessment of effectiveness in basic IT skills training. MIS Quarterly, 401-426. https://doi.org/10.2307/3250989
- Pituch, K. A., y Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244. https://doi.org/10.1016/j. compedu.2004.10.007
- Raab, R. T., Ellis, W. W., y Abdon, B. R. (2001). Multisectoral partnerships in e-learning: a potential force for improved human capital development in the Asia Pacific. The Internet and higher education, 4(3-4), 217-229. https://doi. org/10.1016/S1096-7516(01)00067-7
- Saadé, R., y Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42(2), 317-327. https://doi. org/10.1016/j.im.2003.12.013
- Selim, H. M. (2003). An empirical investigation of student acceptance of course websites. Computers & Education, 40(4), 343-360. https://doi.org/10.1016/ S0360-1315(02)00142-2
- Venkatesh, V., y Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
- Venkatesh, Viswanath, and Hillol Bala. “Technology acceptance model 3 and a research agenda on interventions”. Decision sciences 39, no. 2 (2008): 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
- Volery, T., y Lord, D. (2000). Critical success factors in online education. International Journal of Educational Management, 14(5), 216-223. https://doi. org/10.1108/09513540010344731
- Yee-Loong Chong, A., Ooi, K. B., Lin, B., y Tan, B. I. (2010). Online banking adoption: An empirical analysis. International Journal of Bank Marketing, 28(4), 267-287. https://doi.org/10.1108/02652321011054963
- Zhang, S., Zhao, J., y Tan, W. (2008). Extending TAM for online learning systems: An intrinsic motivation perspective. Tsinghua Science and Technology, 13(3), 312-31 https://doi.org/10.1016/S1007-0214(08)70050-6