Relación entre complejidad y dificultad en tareas con patrones lineales reiterativos en estudiantes de 5 años

  1. Yáñez, Dionisio Félix
  2. Diago, Pascual D.
  3. Arnau, David
Journal:
Revista de educación de la Universidad de Granada

ISSN: 0214-0484

Year of publication: 2018

Issue: 25

Pages: 299-318

Type: Article

DOI: 10.30827/REUGRA.V25I0.126 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

One of the purposes of the teaching of Mathematics in Early Childhood Education is to encourage logical thinking, creativity and the ability to solve problems of students. Among the typical school activities of these ages it is common to find tasks of identification and continuation of reiterative linear patterns. This activity can be studied from a problem-solving context with surplus data. In it, students must discriminate superfluous information from the one that allows him to obtain the series generation rule and solve the task. Different variables such as the repetition pattern length, the number of descriptors, their nature or the presence of distractors allow us to establish different degrees of complexity in the task. Our aim is to explore which factors related to the complexity affect the difficulty experienced by five-year-old students of Early Childhood Education when dealing with this kind of problems. The results obtained indicate that factors such as the presence of distractors or the repetition of attributes in the pattern significantly affect the success rate, while others such as the pattern length or the type of descriptor do not offer significant differences.

Bibliographic References

  • Anderson, J. (2014). Forging New Opportunities for Problem Solving in Australian Mathematics Classrooms through the First National Mathematics Curriculum. En Li, Y. & Lappan, G. (Eds.) Mathematics Curriculum in School Education (pp. 209-229). Dordrecht: Springer. Recuperado de: https://link.springer.com/chapter/10.1007%2F978-94-007-7560-2_11
  • Area, M. (2000). Los materiales curriculares en los procesos de diseminación y desarrollo del currículum. En Escudero, J. (Ed.), Diseño, desarrollo e innovación del curriculum (pp. 189-208). Madrid: Síntesis.
  • Ayllón, M. (2012). Invención-resolución de problemas por alumnos de educación primaria. (Tesis Doctoral) Universidad de Granada. Granada.
  • Castro, E. (1994). Niveles de comprensión en problemas verbales de comparación multiplicativa. (Tesis Doctoral) Universidad de Granada. Granada.
  • Castro, E. (2008). Resolución de problemas: ideas, tendencias e influencias en España. En Investigación en educación matemática XII (pp. 113-140). Badajoz: Sociedad Española de Investigación en Educación Matemática, SEIEM. Recuperado de: https://dialnet.unirioja.es/descarga/articulo/2748780.pdf
  • Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT (2013-2015 Issues), 3(1), 19–36. Recuperado de: https://www.lumat.fi/index.php/lumat-old/article/view/38
  • Cockcroft, W. H. (1985). Las matemáticas sí cuentan: informe Cockcroft. Madrid: Centro de Publicaciones. Ministerio de Educación y Ciencia.
  • Guberman, R., & Leikin, R. (2013). Interesting and difficult mathematical problems: Changing teachers’ views by employing multiple-solution tasks. Journal of Mathematics Teacher Education, 16(1), 33–56. Recuperado de: https://link.springer.com/article/10.1007%2Fs10857-012-9210-7
  • Hernández-Sampieri, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. Sexta Edición. Méxco: Editorial Mc Graw Hill.
  • Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. Mathematical problem solving, 7–20.
  • Kilpatrick, J. (2016). Reformulating Approaching Mathematical Problem Solving as Inquiry. En Posing and Solving Mathematical Problems (pp. 69-81). Springer, Cham. Recuperado de: https://link.springer.com/chapter/10.1007%2F978-3-319-28023-3_5
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159–174.
  • Leong, Y. H., Tay, E. G., Toh, T. L., Quek, K. S., Toh, P. C., & Dindyal, J. (2016). Infusing Mathematical Problem Solving in the Mathematics Curriculum: Replacement Units. En Felmer, P. et al. (Ed.), Posing and Solving Mathematical Problems (pp. 309-325). Springer, Cham. Recuperado de: https://link.springer.com/chapter/10.1007%2F978-3-319-28023-3_18
  • Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269–291. Recuperado de: https://link.springer.com/article/10.1007%2Fs10857-012-9229-9
  • Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem Solving in Mathematics Education. En Problem Solving in Mathematics Education (pp. 1-39). Springer, Cham. Recuperado de:
  • https://link.springer.com/chapter/10.1007%2F978-3-319-40730-2_1
  • MINEDUC. (2012). Nueva base curricular mineduc - Currículum en línea. MINEDUC. Gobierno de Chile. Recuperado 28 de noviembre de 2017, a partir de http://www.curriculumenlineamineduc.cl/605/w3-channel.html
  • MINEDUC. (2018). Material Pedagógico Matemáticas. Recuperado 15 de febrero de 2018, a partir de https://basica.mineduc.cl/matematica/
  • NCTM. (1980). An Agenda for Action. Recommendations for School Mathematics of the 1980s. United States of America: National Council of Teachers of Mathematics.
  • NCTM. (2003). Principios y Estándares para la Educación Matemáticas. Sevilla: Sociedad Andaluza de Educación Matemática Thales.
  • OECD. (2013). Draft PISA 2015 Mathematics Framework. París, Francia. Recuperado de: https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Mathematics%20Framework%20.pdf
  • Oliva, M. A. (2017). Arquitectura de la Política Educativa Chilena (1990-2014): el currículum, lugar de la metáfora. Revista Brasileira de Educação, 22(69), 405-428. Recuperado de: http://www.redalyc.org/html/275/27553036006/
  • Penalva, C., Alaminos, A., Francés, F., & Santacreu, O. (2015). La investigación cualitativa: técnicas de investigación y análisis con Atlas. ti. Ecuador: Cuenca: PYDLOS Ediciones.
  • Piñeiro, J. L., Castro-Rodríguez, E., & Castro, E. (2016). Resultados PISA y resolución de problemas matemáticos en los currículos de Educación Primaria. Edma 0-6: Educación Matemática en la Infancia, 5, 50-64. Recuperado de: http://edma0-6.es/index.php/edma0-6/article/view/4
  • Polya, G. (1965). Cómo plantear y resolver problemas. México: Trillas.
  • Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.
  • Rico, L. (2006). Marco teórico de evaluación en PISA sobre matemáticas y resolución de problemas. Revista de Educación, 275-294. Recuperado de: http://funes.uniandes.edu.co/531/
  • Rico, L., & Fernández-Cano, A. (2013). Análisis didáctico y metodología de investigación. En Rico, L., Lupiáñez, J., & Molina, M. (Eds.), Análisis didáctico en educación matemática: metodología de investigación, formación de profesores e innovación curricular (pp. 1–22). Granada: Comares.
  • Schoenfeld, A. (1985). Mathematical Problem Solving. New York: Academic Press.
  • Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition and Sense of Mathematics. En Grows, D. (Ed.), Handbook of Reasearch on Mathematics Teaching and Learning (pp. 334-370). New York: Macmillan.
  • Schroeder, T. L., & Lester, F. K. (1989). Developing understanding in mathematics via problem solving. New directions for elementary school mathematics, 31–42.
  • Stacey, K. (2005). The place of problem solving in contemporary mathematics curriculum documents. The Journal of Mathematical Behavior, 24(3), 341-350. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0732312305000325
  • Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical thinking and learning, 1(3), 195–229. Recuperado de: https://www.tandfonline.com/doi/abs/10.1207/s15327833mtl0103_2
  • Zhu, Y., & Fan, L. (2006). Focus on the representation of problem types in intended curriculum: A comparison of selected mathematics textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4(4), 609–626. Recuperado de: https://link.springer.com/article/10.1007%2Fs10763-006-9036-9