Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8

  1. Delegido, J.
  2. Pezzola, A.
  3. Casella, A.
  4. Winschel, C.
  5. Urrego, E. P.
  6. Jimenez, J. C.
  7. Sobrino, J. A.
  8. Soria, G.
  9. Moreno, J.
Revista:
Revista de teledetección: Revista de la Asociación Española de Teledetección

ISSN: 1133-0953

Año de publicación: 2018

Número: 51

Páginas: 47-60

Tipo: Artículo

DOI: 10.4995/RAET.2018.8934 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de teledetección: Revista de la Asociación Española de Teledetección

Objetivos de desarrollo sostenible

Resumen

Conocer la severidad de los incendios rurales es imprescindible para evaluar daños y analizar los procesos de recuperación en forma económica y eficaz. Entre diciembre de 2016 y enero de 2017 se quemaron más de 30.000 km2 de arbustos y pastizales en Argentina. El incendio estudiado en este trabajo, localizado en el sur de la provincia de Buenos Aires, corresponde a una zona semiárida con predominio de arbustales xerófilos y pastizales, siendo este ecosistema muy abundante en la zona centro y sur de Argentina. A partir de campañas de campo en el área afectada por este incendio, se georreferenciaron zonas quemadas y se caracterizó la severidad del fuego en 5 niveles. El objetivo de este trabajo es analizar la potencialidad de los nuevos satélites Sentinel-2 para el estudio de incendios, comparándolo con Landsat-8, pues esta misión ha sido una de las más usadas en ello. A partir de imágenes Sentinel-2 y Landsat-8 antes y después del incendio, se han analizado todas las posibles combinaciones de bandas de ambos satélites en índices espectrales de diferencia normalizada (NDSI), así como la diferencia de esos valores antes y después del incendio (dNDSI). Los resultados muestran una significativa correlación (R2 =0,72 y error de estimación de 0,77) del dNDSI obtenido con Sentinel-2 con los niveles de severidad obtenidos en la campaña de campo usando las bandas 8a y 12 (del NIR y del SWIR), que coinciden con las bandas del Normalized Burn Ratio (NBR) mejorando respecto a Landsat-8 (R2 =0,63 y error de estimación de 0,92). Además se observa que la correlación mejora todavía más usando las bandas 6 y 5 de Sentinel-2 localizadas en la región del Red-Edge (R2 =0,74 y error de estimación de 0,76). Se ha observado una correlación inversa entre la recuperación de la vegetación cuatro meses después del incendio y el nivel de severidad del incendio.

Información de financiación

El satélite Landsat-8 (L8), de la National Aeronautics and Space Administration (NASA) y el United States Geological Survey (USGS) fue lanzado en Febrero de 2013 como continuación de la misión Landsat (NASA, 2017). En la Tabla 1 se muestran sus características espectrales. Para este trabajo se seleccionaron dos imágenes L8 de la zona del incendio: 15 de diciembre de 2016 (pre-incendio) y 07 de enero de 2017 (post-incendio) que fueron obtenidas en forma gratuita en valores de reflectividad, a través de la página del USGS (http://earthexplorer.usgs.gov/).

Referencias bibliográficas

  • Botella-Martínez, M. A., Fernández-Manso, A. 2017. Study of post-fire severity in the Valencia region comparing the NBR, RdNBR and RBR indexes derived from Landsat 8 images. Revista de Teledetección, 49, 33-47. https://doi.org/10.4995/raet.2017.7095
  • Bran, D., Cecchi, G., Gaitan, J., Ayesa, J., Lopez, C. 2007. Efecto de la severidad de quemado sobre la regeneración de la vegetación en el Monte Austral. Revista Ecología Austral, 17(1), 123-132.
  • Cabrera, A. 1951. Territorios fitogeográficos de la República Argentina. Boletín de la Sociedad Argentina de Botánica. IV, N° 1 – 2.
  • Casas, R., Irurtia, C., Michelena, R. 1978. Desmonte y habilitación de tierras para la producción agropecuaria en La República Argentina. Suelos, 157. Buenos Aires, Argentina.
  • Cecchi, G. A., Krofpl, A.I., Kugler, N. et al., 2006. Principales gramíneas forrajeras perennes del monte. EEA Valle Inferior Convenio INTA – provincia de Río Negro.
  • Chuvieco, E. 2002. Teledetección Ambiental. Ed. Ariel Ciencia, Barcelona, España.
  • Chuvieco, E., Riaño, D., Danson, F. M., Martin, P. 2006. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. Journal of Geophysical Research, 111(G4). https://doi.org/10.1029/2005JG000143.
  • Cocke, A. E., Fulé, P. Z., Crouse, J. E. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14(2), 189-198. https://doi.org/10.1071/WF04010
  • Delegido, J., Verrelst, J., Meza, C. M., Rivera, J. P. Alonso, L., Moreno, J. 2013. A red-edge spectral index for remote sensing estimation of green LAI over Agroecosystems. European Journal Agronomy, 46, 42-52. https://doi.org/10.1016/j.eja.2012.12.001
  • Delegido, J., Meza, C.M., Pasqualotto, N., Moreno, J. 2016. Influencia del ángulo de observación en la estimación del índice de área foliar (LAI) mediante imágenes PROBA/CHRIS. Revista de Teledetección, 46, 45-55. https://doi.org/10.4995/raet.2016.4612
  • Delegido, J., Pezzola, A., Casella, A., Winschel, C., Urrego, E. P., Jiménez-Muñoz, J. C., Soria, G., Sobrino, J. A., Moreno, J. 2017. Potencialidad de índices de severidad de incendios utilizando Sentinel2 y su análisis comparativo con Landsat8 para la cartografía en los incendios rurales en el Sur de la provincia de Buenos Aires (Argentina) 2016- 2017. XVII Congreso de la Asociación Española de Teledetección. Murcia, 3 al 7 octubre 2017.
  • De Santis, A., Chuvieco, E. 2007. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. 2006. Remote Sensing of Environment, 108, 422–435. https://doi.org/10.1016/j.rse.2006.11.022
  • Diaz-Delgado, R., Lloret, F., Folliott, P. F. 2003. Influence of fire severity on plant regeneration by means of remote sensing imagery. International Journal of Remote Sensing, 24, 1751-1763. https://doi.org/10.1080/01431160210144732
  • ESA. 2017. ESA’s Sentinel Satellites. Available online: http://www.esa.int/Our_Activities/Observing_the_ Earth/Copernicus/Sentinel-2/Facts_and_figures (acceso el 31 de marzo de 2017)
  • Escuin, S., Navarro, R., Fernandez, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053-1073. https://doi.org/10.1080/01431160701281072
  • Fernández-Manso, A., Fernández-Manso, O., Quintano, C. 2016. SENTINEL-2A red-edge spectral indices suitability for discrimination burn severity. International Journal of Applied Earth Observation and Geoinformation, 50, 170-175. https://doi.org/10.1016/j.jag.2016.03.005
  • Fernández-Manso, A., Fernández-Manso, O., Quintano, C., Marcos, E., Calvo, L. 2017. Utilización de las imágenes Sentinel-2 para cartografía de área quemada. Congreso AET, Murcia 3-7 Octubre 2017.
  • Ghermandi, L., Gonzalez, S., Lescano, M., Oddi, F. 2013. Effects of fire severity on early recovery of Patagonian steppes. International Journal of Wildland Fire, 22, 1155-1062. https://doi.org/10.1071/WF12198
  • González, S. 2002. El Banco de semillas como estrategia de regeneración postfuego en un pastizal del Noroeste de la Patagonia. Tesis de Licenciatura, Universidad Nacional del Comahue, S.C. de Bariloche, Argentina.
  • González, S. 2011. Estrategias de regeneración postfuego en pastizales del noroeste patagónico: un enfoque experimental, PhD thesis, Centro Regional Universitario Bariloche, Argentina.
  • González-Alonso, F., Merino-De-Miguel, S., RoldánZamarrón, A., García-Gigorro, S., Cuevas, J. M. 2007. MERIS Full Resolution data for mapping level-of-damage caused by forest fires: the Valencia de Alcántara event in August 2003. International Journal of Remote Sensing, 28:3-4, 797-809. https://doi.org/10.1080/01431160600979115
  • Key, C. H., Benson, N. 2005. Landscape assessment: ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. En FIREMON: Fire Effects Monitoring and Inventory System. Lutes, Duncan C.; Keane, Robert E.; Caratti, John F.; Key, Carl H.; Benson, Nathan C.; Sutherland, Steve; Gangi, Larry J. 2006. Gen. Tech. Rep. RMRS -GTR-164-CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
  • Kröpfl, A., Cecchi, G., Villasuso, N., Rossio, E., Pelotto, J. 2005. Manual de especies silvestres del monte Rionegrino. Estación Experimental Agropecuaria Valle Inferior – Centro Universitario Regional Zona Atlántica (UNC). Ediciones INTA, Argentina.
  • Lamberto, S. 1987. Vegetación natural. En: Evaluación expeditiva del recurso suelo y uso y cobertura de la tierra en el sur de la provincia de Buenos Aires. Informe técnico N° 28. Secretaria de Agricultura, Ganadería y Pesca. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Hilario Ascasubi. Bahía Blanca, Argentina.
  • López-García, M. J., Caselles, V. 1991. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 1, 31-37. https://doi.org/10.1080/10106049109354290
  • Martínez, S., Chuvieco, E., Aguado, I., Salas, J. 2017. Burn severity and regeneration in large forest fires: an analysis from Landsat time series. Revista de Teledetección, 49, 17-32. https://doi.org/10.4995/raet.2017.7182
  • Montorio, R., Pérez, F., García, A., Vlassova, L., de la Riva, J. R. 2014. La severidad del fuego: Revisión de conceptos, métodos y efectos ambientales. En: José Arnáez, Penélope González-Sampériz, Teodoro Lasanta y Blas L. Valero Garcés (eds.). Geoecología, cambio ambiental y paisaje: homenaje al profesor José María García Ruiz. Logroño: Instituto Pirenaico de Ecología (CSIC): Universidad de La Rioja, España.
  • NASA, National Aeronautics and Space Administration. 2017. https://landsat.gsfc.nasa.gov/landsat-datacontinuity-mission/
  • Navarro, G., Caballero, I., Silva, G., Parra, P., Vázquez, A., Caldeira, R. 2017. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation, 58, 97-106. https://doi.org/10.1016/j.jag.2017.02.003
  • Nicora, M. G. 2014. Actividad eléctrica atmosférica en Sudamérica. Tesis Doctoral. Facultad de Ciencias Astronómicas y Geofísicas La Plata, Buenos Aires.
  • Quintano, C., Fernández-Manso, A., FernándezManso, O. 2018. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. International Journal of Applied Earth Observation and Geoinformation, 64, 221-225. https://doi.org/10.1016/j.jag.2017.09.014
  • Roldán-Zamarrón, A., Merino-de-Miguel, S., GonzálezAlonso, F., García-Gigorro, S., Cuevas, J. M. 2006. Minas de Riotinto (south Spain) forest fire: Burned area assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS postfire images. Journal Geophysical Research, 111, G04S11. https://doi.org/10.1029/2005JG000136
  • Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Van Marle, M.J.E., Morton, D.C., Collatz, G.J., Yokelson, R.J., Kasibhatla, P. S. 2017. Global fire emissions estimates during 1997- 2016. Earth System Science Data, 9(2), 697-720. https://doi.org/10.5194/essd-9-697-2017
  • Vanzolini, J., Pezzola, A., Iurman, D., Vasicek J., Cantamutto, M. 2017. Reporte de la recorrida en las áreas afectadas por fuego en Villarino y Patagones. Informe técnico. Estación Experimental Agropecuaria INTA Hilario Ascasubi. Argentina.