Consumo de oxígeno y umbral anaeróbico en jóvenes deportistas de atletismo, natación y triatlón

  1. Vicente Torres Navarro 12
  2. José Campos Granell 1
  1. 1 Departamento de Educación Física y Deportiva. Facultad deCiencias de la Actividad Física y el Deporte.Universidad de Valencia (España)
  2. 2 Centro de Medicina Deportiva. Centro de Tecnificación de Cheste(Valencia, España)
Journal:
Apunts: Educación física y deportes

ISSN: 1577-4015 2014-0983

Year of publication: 2018

Issue: 132

Pages: 94-109

Type: Article

DOI: 10.5672/APUNTS.2014-0983.ES.(2018/2).132.07 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Apunts: Educación física y deportes

Abstract

The purpose of this study is to ascertain whether there are differences in the physiological profiles of young athletes according to their sports specialty and age group. The sample is comprised of 400 athletes of both sexes from the Cheste Technification Centre (Valencia) classified into 3 age groups: <12-13, 14-16 and 17-20, and three endurance sports specialties: track and field, swimming and triathlon (n=134, n=135 and n=131, respectively). The physiological profile is analyzed based on the values of maximum oxygen consumption (VO2max) and the anaerobic threshold (AnT) based on total body mass, muscle mass and fat-free mass, as well as logarithmic oxygen consumption (logVO2), in order to nullify the effect of body size. The data were obtained from an incremental ergospirometric test on a ramp following the Wasserman protocol. The results stemming from the analysis of variance (Anova) in the sports specialties indicate that there are significant differences in all the variables measured between the athletes in track and field and swimming (p<0.05), and between those in triathlon and swimming (p<0.05). In contrast, no significant differences were found between the track and field athletes and triathletes (p>0.05). Regarding the age groups, significant differences were found in all the variables measured between the <12-13 and 14-16 age groups (p<0.05), as well as between the <12-13 and 17-20 age groups (p<0.05). However, no significant differences were found between the 14-16 and 17-20 age groups (p>0.05)

Bibliographic References

  • Armstrong, N. (2007). Paediatric Exercise Physiology. En N. Spurway & D. MacLaren (Eds.), Advances in Sport and Exercise Sciences Series (Cap. 2) . London: Churchill Livingstone Elsevier.
  • Biddle, S. J. (1993). Children. Exercise and Mental Health. International Journal of Sport Psychology, 24, 200-216.
  • Canda A., Sainz L., De Diego T., & Pacheco J. L. (2001). Características morfológicas del decatleta vs especialistas. Archivos de Medicina del Deporte, XVIII, 84, 277-284.
  • Carter, J. E. L., & Heath, B. H. (1990). Somatotyping: development and implications. Cambridge Studies in Biological Anthropology (Vol. 5). Cambridge University Press.
  • Casajús, J. A., Piedrafita, E., & Aragonés, M. T. (2009). Criterios de maximalidad en pruebas de esfuerzo. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte, 9(35), 217-231.
  • Ekblom, B. (1969). Effect of physical training on oxygen transport system in ma. Acta Physiologica Scandinavica (Suppl. 328), 1-45. Fernandes, R. J., Sousa, M., Machado, L., & Vilas-Boas, J. P. (2011).
  • Step length and individual anaerobic threshold assessment in swimming. International Journal of Sports Medicine, 32(12), 940-946. doi:0.1055/s-0031-1283189
  • García Manso, J. M., Campos, J., Lizaur, P., & Pablos, C. (2003). El talento deportivo. Formación de elites deportivas. Madrid: Gymnos.
  • García Verdugo, M., & Miguel Landa, L. (2005). Medio fondo y fondo. La preparación del corredor de resistencia. Real Federación Española de Atletismo.
  • García-Pallarés, J., Sánchez-Medina, L., Carrasco, L., Díaz, A., & Izquierdo, M. (2009). Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. European Journal of Applied Physiology, 106(4), 629-638. doi.:10.1007/ s00421-009-1061-2
  • Garrido Chamorro, R. P., & González Lorenzo, M. (2006). Volumen de oxígeno por kilogramo de masa muscular en futbolistas. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte, 6(21), 44-61.
  • Gaskill, S. E., Ruby, B. C., Walker, A. J., Sanchez, O. A., Serfass, R. C., & Leon, A. S. (2001). Validity and reliability of combining three methods to determine ventilatory threshold. Medicine and Science in Sports and Exercise, 33(11), 1841–1848. doi:10.1097/00005768-200111000-00007
  • Gómez, M. C., Sabater, F., Olaso, G., Ferrando, B., Derbre, F., Salvador-Pascual, A., ... Pareja-Galeano, H. (2014). Redox regulation of E3 ubiquitin ligases and ther role in skeletal muscle atroph. Free Radical Biology and Medicine, 75(Suppl. 1), S43-S44. doi:10.1016/j.freeradbiomed.2014.10.799
  • Hech, H., Mader, A., Hess, G., Mucke, S., Muller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. International Journal of Sports Medicine, 6(3), 117-30. doi:10.1055/s-2008-1025824
  • Hubert, A. J., & Else, P. L. (2000). Mechanisms underlying the cost of living in animals. Annual Review of Physiology, 62, 207-235. doi:10.1146/annurev.physiol.62.1.207
  • Krebs, H. A. (1975). The August Krogh Principle: For many problems there is an animal on which it can be most conveniently studied. Journal of Experimental Zoology, 194(1), 221-226. doi:10.1002/ jez.1401940115
  • Larsen, H. B. (2003). Kenyan dominance in distance running. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 136(1), 161-170. doi:10.1016/S1095-6433(03)00227-7
  • Legaz-Arrese, A. (2012). Manual de entrenamiento deportivo. Barcelona: Paidotribo.
  • Lentini A., Gris, M., Cardey, L., Aquilino, G., & Dolce, A. (2004). Estudio somatotípico en deportistas de alto rendimiento de Argentina. Archivos de Medicina del Deporte, XXI(104).
  • Lucia, A., Hoyos, J., Perez, M., Santalla, A., & Chicharro, J. L. (2002). Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Medicine & Science in Sports & Exercise, 34(12), 2079 – 2084. doi:10.1097/00005768-200212000-00032
  • Marliss, E. B., Kreisman, S. H., Manzon, A., Halter, J. B., Vranic, M., & Nessim, S. J. (2000). Gender differences in glucoregulatory responses to intense exercise. Journal Applied Physiology, 88(2), 457-466.doi:10.1152/jappl.2000.88.2.457
  • Navarro, F., & Oca, A. (2010). Planificación y Control del Entrenamiento. Madrid: RFEN/Ciultivalibros.
  • Noakes, T. D. (2008). Testing for máximum oxygen consumption has produced a brainless model of human exercise performance. Journal of Sports Medicine, 42(7), 551-5. doi:10.1136/bjsm.2008.046821
  • Ogita, F. (2006). Energetics in competitive swimming and its application for training. Biomechanics and Medicine in Swimming, X. Porto, 117-121.
  • Peyrebrune, M. C., Toubekis, A. G., Lakomy, H. K. A., & Nevill, M. E. (agosto, 2012). Estimating the energy contribution during single and repeated sprint swimming. Scandinavian Journal of Medicine & Science In Sports.
  • Pons, V., Riera, J., Galilea, P. A., Drobnic, F., Banquells, M., & Ruiz O. (2015). Caracerísticas antropométricas, composición corporal y somatotipo por deportes. Datos de referencia del CAR de Sant Cugat, 1989-2013. Apunts. Medicina de l’Esport, 50(186), 65-72. doi:10.1016/j.apunts.2015.01.002
  • Poole, D. C., Wilkerson, D. P., Jones, A. M. (2008). Validity of criteria for establishing maximal O2 uptake during ramp exercise test. European Journal of Applied Physiology, 102(4), 403-410. doi:10.1007/s00421-007-0596-3
  • Rama, L., Santos, J., Gomes, P., & Alves, F. (2006). Determinant factors related to performance in young swimmers. En J. P. VilasBoas, F. Alves & A. Porto Marques, Biomechanics and Medicine in Swimming X. (Eds.), Portuguese Journal of Sport Science, 246-249.
  • Reybrouk, T. (1985). Ventilatory anaerobic threshold in healthy children. Age and sex differences. European Journal of Applied Physiology and Occupational Physiology, 54(3), 278-284. doi:10.1007/BF00426145
  • Rodríguez, P., Oscar, V., Tejo, C., & Rozowski, N. (2014). Somatotipo de los deportistas de alto rendimiento de Santiago, Chile. Revista chilena de nutrición, 41(1). doi:10.4067/S0717-75182014000100004
  • Rogers, M. (1995). Scaling for the VO2 to body-size relationship among children and adults. Journal of Applied Physiology, 79, 958- 967. doi:10.1152/jappl.1995.79.3.958
  • Saltin, B., Kim, C. K., Terrados, N., Larsen, H., Svedenhag, J., & Rolf, C. J. (1995). Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scandinavian. Journal of Medicine & Science in Sports 5, 222-230 doi:10.1111/j.1600-0838.1995.tb00038.x
  • Torres, V., Campos, J., & Aranda, R. (2016). Estudio de los perfiles fisiológicos de jóvenes deportistas de diferentes especialidades deportivas. IX Congreso Internacional de la Asociación Española de Ciencias del Deporte. Toledo (España).
  • Torres, V. (junio, 2016). Influencia de la masa muscular de la extremidad inferior y la masa muscular de la extremidad superior en el volumen de oxigeno máximo por kilogramo de masa muscular en diferentes especialidades deportivas de resistencia. XII Congreso Internacional de Ciencias del Deporte y la Salud. Pontevedra (España).
  • Wasserman, K. (1984). Anaerobiosis, lactate and gas exchange during exercise issues. Federation Proc, 45, 2409-2416.
  • Wasserman, K., Whipp, B. J., Koyl, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35(2), 236,243. doi:10.1152/ jappl.1973.35.2.236
  • Welsman, J., & Armstrong, N. (2000). Statistical techniques for interpreting body-size related exercise performance during growth. Pediatric Exercice Science, 12(2), 112-127. doi:10.1123/pes.12.2.112
  • Weston, A. R., Mbambo, Z., & Myburgh, K. H. (2000). Running economy of African and Caucasian distance runners. Medicine and Science in Sports and Exercise 332(6), 1130-1134. doi:10.1097/00005768-200006000-00015