Análisis de la utilidad del algoritmo Gradient Boosting Machine (GBM) en la predicción del fracaso empresarial

  1. José Pozuelo Campillo 1
  2. Julián Martínez Vargas 1
  3. Pedro Carmona Ibáñez 1
  1. 1 Departament de Comptabilitat. Universitat de València
Revista:
Revista española de financiación y contabilidad

ISSN: 0210-2412

Año de publicación: 2018

Volumen: 47

Número: 4

Páginas: 507-532

Tipo: Artículo

DOI: 10.1080/02102412.2018.1442039 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Revista española de financiación y contabilidad

Resumen

Este estudio, novedoso en cuanto a la utilización de la metodología basada en la cultura de los algoritmos, prueba la capacidad de la técnica ‘Gradient Boosting Machine’ (GBM) en la predicción de la quiebra de empresas españolas. Asimismo, muestra su utilidad para identificar las variables más relevantes que anticipan el fracaso empresarial. Aplicando esta metodología a una muestra de 1.506 empresas del periodo 2010–2013 se han estimado modelos de predicción que alcanzan porcentajes de acierto que superan los obtenidos con otras metodologías como el AdaBoost o la Regresión Logística, resultando determinantes las variables que relacionan la cifra de ventas con el activo y los gastos financieros.

Información de financiación

La regresión logística también se ha empleado en la predicción del fracaso empre-sarial y conlleva la utilización de mínimos cuadrados o máxima verosimilitud para

Financiadores

Referencias bibliográficas

  • Alfaro, E., Gámez, M., y García, N., (2007). A boosting approach for corporate failure prediction. Applied Intelligence, 27(1), 29–37.
  • Alfaro, E., Gámez, M., y García, N., (2008a). Linear discriminant analysis versus adaboost for failure forecasting. Revista Española de Financiación y Contabilidad, 37(137), 13–32.
  • Alfaro, E., Gámez, M., y García, N., (2013). Adabag: An R package for classification with boosting and bagging. Journal of Statistical Software, 54(2), 1–35.
  • Alfaro, E., García, N., Gámez, M., y Elizondo, D., (2008b). Bankruptcy forecasting: An empirical comparison of adaboost and neural networks. Decision Support Systems, 45(1), 110–122.
  • Altman, E. I., (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589–609.
  • Beaver, W. H., (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4(Empirical Research in Accounting: Selected Studies 1966), 71–111.
  • Bellovary, J. L., Giacomino, D. E., y Akers, M. D., (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, 33(Winter), 1–43.
  • Breiman, L., (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231.
  • Breiman, L., Friedman, J. H.:., Olshen, R. A., y Stone, C. J., (1984). Classification and regression trees. Belmont, CA: EE.UU.
  • Campbell, J. Y., Hilscher, J., y Szilagyi, J., (2008). In search of distress risk. Journal of Finance, 63(6), 2.899–2.939.
  • Chambers, M., y Dinsmore, T. W., (2015). Advanced analytics methodologies: Driving business value with analytics. NJ: Pearson Education.
  • Charalambakis, E., y Garrett, I., (2016). On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms. Review of Quantitative Finance & Accounting, 47(1), 1–28.
  • Charitou, A., Neophytou, E., y Charalambous, C., (2004). Predicting corporate failure: Empirical evidence for the UK. European Accounting Review, 13(3), 465–497.
  • Correa, A., Acosta, M., y González, A., (2003). La insolvencia empresarial: Un análisis empírico para la pequeña y mediana empresa. Revista de Contabilidad / Spanish Accounting Review, 6(12), 47–79.
  • Cortes, C., y Mohri, M., (2004). AUC optimization vs, error rate minimization. Advances in Neural Information Processing Systems, 16(16), 313–320.
  • Dettling, M., y Bühlmann, P., (2003). Boosting for tumor classification with gene expression data. Bioinformatics, 19(9), 1.061–1.069.
  • Díaz Martínez, Z., Fernández Menéndez, J., y Segovia Vargas, M. J., (2004). Sistemas de inducción de reglas y árboles de decisión aplicados a la predicción de insolvencias en empresas aseguradoras. Documentos de Trabajo de la Facultad de Ciencias Económicas y Empresariales, nº 09. Universidad Complutense de Madrid.
  • Elith, J., Leathwick, J. R., y Hastie, T., (2008). A working guide to boosted regression trees. Journal of Animal Ecography, 77, 802–813.
  • Eugster, M. J., Hothorn, T., y Leisch, F., (2008). Exploratory and inferential analysis of benchmark experiments. Tech. Rep, 30. Ludwigs-Maximilians-Universität München. Department of Statistics. Munich.
  • Freund, Y., y Schapire, R. E., (1997). A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
  • Friedman, J. H., (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1.189–1.232.
  • Friedman, J. H., (2002). Stochastic gradient boosting. Journal of Computational Statistics & Data Analysis, 38(4), 367–378.
  • Frydman, H., Altman, E. I., y Kao, D. L., (1985). Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance, 40(1), 269–291.
  • Hastie, T., Tibshirani, R., y Friedman, J., (2009). The elements of statistical learning. New York: Sprinter.
  • Hothorn, T., Leisch, F., Zeileis, A., y Hornik, K., (2005). The design and analysis of benchmark experiments. Journal of Computational and Graphical Statistics, 14(3), 675–699.
  • Instituto Nacional de Estadística (2016). Estadística del Procedimiento Concursal (EPC). Cuarto trimestre de 2015 y año 2015. Datos provisionales. Notas de prensa. Retrieved from http://www.ine.es/daco/daco42/epc/epc0415.pdf
  • James, G., Witten, D., Hastie, T., y Tibshirani, R., (2013). An introduction to statistical learning (2nd ed.). New York: Springer.
  • Jones, S., y Hensher, D. A., (2004). Predicting firm financial distress: A mixed logit model. Accounting Review, 79(4), 1.011–1.038.
  • Jones, S., Johnstone, D., y Wilson, R., (2015). An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking & Finance, 56, 72–85.
  • Kim, M. J., y Kang, D. K., (2010). Ensemble with neural networks for bankruptcy prediction. Expert System with Applications, 37(4), 3.373–3.379.
  • Kim, M. J., Kang, D. K., y Kim, H. B., (2015). Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert Systems with Applications, 42(3), 1.074–1.082.
  • Kim, S. Y., y Upneja, A., (2014). Predicting restaurant financial distress using decision tree and adaboosted decision tree models. Economic Modelling, 35, 354–362.
  • Kuhn, M., y Johnson, K., (2013). Applied predictive modeling. New York: Springer.
  • Kuhn, M., y otros colaboradores, (2016). Caret: Classification and regression training. R package version 6.0-73. Retrieved from http://CRAN.R-project.org/package=caret
  • Merler, S., Furlanello, C., Larcher, B., y Sboner, A., (2001). Tuning Cost-sensitive Boosting and its Application to Melanoma Diagnosis. en J., Kittler & F., Roli (Eds.), Proceedings of the 2nd International Workshop on Multiple Classifier Systems MCS2001, 2096 of lncs (pp. 32–42). Springer.Trento. Italy.
  • Momparler, A., Carmona, P., y Climent, F. J., (2016). La predicción del fracaso bancario con la metodología Boosting Classification Tree. Revista Española de Financiación y Contabilidad, 45(1), 63–91.
  • Natekin, A., y Knoll, A., (2013). Gradient boosting machines. A tutorial. Frontiers in Neurorobotics, 7(21), 1–21.
  • Neophytou, E., y Molinero, C. M., (2004). Predicting corporate failure in the UK: A multidimensional scaling approach. Journal Of Business Finance & Accounting, 31(5/6), 677–710.
  • Ohlson, J., (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131.
  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
  • Ravi Kumar, P., y Ravi, V., (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review. European Journal of Operational Research, 180(1), 1–28.
  • Ridgeway, G., (2009). Generalized boosted models: A guide to the gbm package. Retrieved from https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/inst/doc/gbm.pdf?revision=18&root=gbm&pathrev=22
  • Ridgeway, G., (2015). Gbm: Generalized boosted regression models. R package version 2.1.1. Retrieved from http://CRAN.R-project.org/package=gbm
  • Rodríguez Jiménez, M. A., (2005). Estudio mediante SMV, Boosting y Bootstrap de la relevancia de las regiones funcionales en la activación cerebral. Universidad Carlos III de Madrid. Retrieved from http://www.it.uc3m.es/jvillena/irc/practicas/06-07/33.pdf
  • Rodríguez López, M., (2001). Predicción del fracaso empresarial en compañías no financieras. Consideración de técnicas de análisis multivariante de corte paramétrico. Actualidad Financiera, 6, 27–42.
  • Sanz, J. A., Galar, M., Bustince, H., Marco-Detchart, C., Gradín, C., y Belzunegui, T., (2015). Predicción de la supervivencia de pacientes traumatizados graves utilizando EUSBoost. Actas de la XVI Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA, Noviembre, Albacete.
  • Sun, J., Li, H., Huang, Q. H., y He, K. Y., (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41–56.
  • Tascón, M. T., y Castaño, F. J., (2012). Variables y modelos para la identificación y predicción del fracaso empresarial: revisión de la investigación empírica reciente. Revista de Contabilidad/Spanish Accounting Review, 15(1), 7–58.
  • Verikas, A., Kalsyte, Z., Bacauskiene, M., y Gelzinis, A., (2010, July). Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: A suvey. Soft Computing, 995–1.010.
  • Wang, G., Ma, J., y Yang, S., (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2.353–2.361.
  • West, D., Dellana, S., y Qian, J., (2005). Neural network ensemble strategies for financial decision applications. Computers & Operations Research, 32(10), 2.543–2.559.
  • Wilson, G. I., y Sharda, R., (1994). Bankruptcy prediction using neural network. Decision Support Systems, 11, 545–557.
  • Zieba, M., Tomczak, S. K., y Tomczak, J. M., (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58(1), 93–101.
  • Zmijeswski, M. E., (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Review, 22, 59–82.