miR-1226 detection in GCF as potential biomarker of chronic periodontitisa pilot study

  1. Pablo Micó Martínez 1
  2. Jose Luis Garcia Gimenez 2
  3. Marta Seco Cervera 3
  4. Andrés López Roldán 1
  5. Pedro J. Almiñana Pastor 1
  6. Francisco M. Alpiste Illueca 1
  7. Federico V. Pallardó Calatayud 2
  1. 1 Dept. of Stomatology. Faculty of Medicine and Dentistry. University of Valencia. St/ Gascó Oliag, 1, 46010. Valencia, Spain
  2. 2 Center for Biomedical Network Research on Rare Diseases (CIBERER). CIBER-ISCIII. St/ Álvaro de Bazán, 10, 46010. Valencia, Spain; Dept. of Physiology. Faculty of Medicine and Dentistry. University of Valencia. Av/ Blasco Ibañez, 15, 46010. Valencia, Spain; INCLIVA Health Research Institute. Av/ de Menendez y Pelayo, 4, 46010. Valencia, Spain; Epigenetics Research Platform. CIBERER-UV. Av/ Blasco Ibañez, 15, 46010. Valencia, Spain
  3. 3 Center for Biomedical Network Research on Rare Diseases (CIBERER). CIBER-ISCIII. St/ Álvaro de Bazán, 10, 46010. Valencia, Spain; Dept. of Physiology. Faculty of Medicine and Dentistry. University of Valencia. Av/ Blasco Ibañez, 15, 46010. Valencia, Spain; INCLIVA Health Research Institute. Av/ de Menendez y Pelayo, 4, 46010. Valencia, Spain
Revista:
Medicina oral, patología oral y cirugía bucal. Ed. inglesa

ISSN: 1698-6946

Año de publicación: 2018

Volumen: 23

Número: 3

Páginas: 8

Tipo: Artículo

DOI: 10.4317/MEDORAL.22329 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Medicina oral, patología oral y cirugía bucal. Ed. inglesa

Resumen

The study and identification of new biomarkers for periodontal disease, such as microRNAs (miRNAs), may give us more information about the location and severity of the disease and will serve as a basis for treatment planning and disease-monitoring. miRNAs are a group of small RNAs which are involved in gene regulation by binding to their messenger RNA target (mRNA). In this pilot study, the procedure for purifying miRNAs from gingival crevicular fluid (GCF) was, for the first time, described. In addition, the concentration of miRNAs in GCF was analyzed and compared between patients with moderate or severe chronic periodontitis (CP) and healthy controls. GCF samples were collected from single-rooted teeth of patients with moderate or severe CP (n=9) and of healthy individuals (n=9). miRNAs were isolated from GCF using miRNeasy Serum/Plasma kit (Qiagen, CA. USA). Reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the expression of a series of miRNAs candidates that are related to bone metabolism. The significance of differences in miRNA levels between both groups was determined using Mann-Whitney U test. The results from this pilot study indicate that miRNAs can be isolated from GCF. Six different miRNAs were analyzed (miR-671, miR-122, miR-1306, miR-27a, miR-223, miR-1226), but only miR-1226 showed statically significant differences between the CP group and healthy controls (p<0.05). This miRNA was downregulated in patients with CP. Within the limitations of the present study, it may be concluded that miR-1226 can be a promising biomarker for periodontal disease, adding relevant information to common clinical parameters used for diagnosis and prognosis of periodontitis.

Referencias bibliográficas

  • Lamster, IB, Novak, MJ. (1992). Host Mediators in Gingival Crevicular Fluid: Implications for the Pathogenesis of Periodontal Disease. Crit Rev Oral Biol Med. 3. 31-60
  • Griffiths, GS. (2003). Formation, Collection and Significance of Gingival Crevice Fluid. Periodontol 2000. 31. 32-42
  • Gomez, RS, Dutra, WO, Moreira, PR. (2009). Epigenetics and periodontal disease: Future perspectives. Inflamm Res. 58. 625
  • Bobetsis, YA,  Barros, SP,  Lin, DM,  Weidman, JR,  Dolinoy, DC,  Jirtle, RL. (2007). Bacterial Infection Promotes DNA Hypermethylation. J Dent Res. 86. 169-174
  • Zhang, S, Crivello, A, Offenbacher, S, Moretti, A, Paquette, DW, Barros, SP. (2010). Interferon-Gamma Promoter Hypomethylation and Increased Expression in Chronic Periodontitis. J Clin Periodontol. 37. 953
  • Zhang, S, Barros, SP, Moretti, AJ, Yu, N, Zhou, J, Preisser, JS. (2013). Epigenetic Regulation of TNFA Expression in Periodontal Disease. J Periodontol. 84. 1606
  • Loo, WT, Jin, L, Cheung, MN, Wang, M, Chow, LW. (2010). Epigenetic Change in E-Cadherin and COX-2 to Predict Chronic Periodontitis. J Transl Med. 8. 110
  • Cantley, MD, Bartold, PM, Marino, V, Fairlie, DP, Le, GT, Lucke, AJ. (2011). Histone Deacetylase Inhibitors and Periodontal Bone Loss. J Periodontal Res. 46. 697-703
  • García-Giménez, JL, Sanchis-Gomar, F, Lippi, G, Mena, S, Ivars, D, Gomez-Cabrera, MC. (2012). Epigenetic Biomarkers: A New Perspective in Laboratory Diagnostics. Clin Chim Acta. 413. 1576
  • Keller, A, Leidinger, P, Bauer, A, Elsharawy, A, Haas, J, Backes, C. (2011). Toward the Blood-Borne miRNome of Human Diseases. Nat Methods. 8. 841
  • Luan, X, Zhou, X, Trombetta-Silva, J, Francis, M, Gaharwar, AK, Atsawasuwan, P. (2017). MicroRNAs and Periodontal Homeostasis. J Dent Res. 96. 491-500
  • Lian, JB, Stein, GS, van Wijnen, AJ, Stein, JL, Hassan, MQ, Gaur, T. (2012). MicroRNA Control of Bone Formation and Homeostasis. Nat Rev Endocrinol. 8. 212
  • Armitage, GC. (1999). Development of a Classification System for Periodontal Diseases and Conditions. Ann Periodontol. 4. 1-6
  • Guentsch, A, Kramesberger, M, Sroka, A, Pfister, W, Potempa, J, Eick, S. (2011). Comparison of gingival crevicular fluid sampling methods in patients with severe chronic periodontitis. J Periodontol. 82. 1051
  • Kanehisa, M, Goto, S, Kawashima, S, Okuno, Y, Hattori, M. (2004). The KEGG Resource for Deciphering the Genome. Nucleic Acids Res. 32. 277
  • Garcia-Gimenez, JL, Hermida-Bas, T, Pallardó-Calatayud, FV, Hervás-Marín, D, Mena-Mollá, S. (2016). Kit and method for the diagnosis/prognosis of idiopathic scoliosis.
  • McCarthy, DJ, Chen, Y, Smyth, GK. (2012). Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. Nucleic Acids Res. 40. 4288
  • Paraskevopoulou, MD, Georgakilas, G, Kostoulas, N, Vlachos, IS, Vergoulis, T, Reczko, M. (2013). DIANA-microT Web Server v5.0: Service Integration into miRNA Functional Analysis Workflows. Nucleic Acids Res. 41. 169
  • St-Arnaud, R, Prud'homme, J, Leung-Hagesteijn, C, Dedhar, S. (1995). Constitutive Expression of Calreticulin in Osteoblasts Inhibits Mineralization. J Cell Biol. 131. 1351
  • Jin, C, Rajabi, H, Kufe, D. (2010). miR-1226 Targets Expression of the Mucin 1 Oncoprotein and Induces Cell Death. Int J Oncol. 37. 61
  • Ramasamy, S, Duraisamy, S, Barbashov, S, Kawano, T, Kharbanda, S, Kufe, D. (2007). The MUC1 and Galectin-3 Oncoproteins Function in a microRNA-Dependent Regulatory Loop. Mol Cell. 27. 992-1004
  • Kramer, I, Halleux, C, Keller, H, Pegurri, M, Gooi, JH, Weber, PB. (2010). Osteocyte Wnt/beta-Catenin Signaling Is Required for Normal Bone Homeostasis. Mol Cell Biol. 30. 3071
  • Almeida, M, Han, L, Bellido, T, Manolagas, SC, Kousteni, S. (2005). Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by Beta-Catenin-Dependent and -Independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-kinase/AKT. J Biol Chem. 280. 41342
  • Wei, X, Xu, H, Kufe, D. (2005). Human MUC1 Oncoprotein Regulates p53-Responsive Gene Transcription in the Genotoxic Stress Response. Cancer cell. 7. 167
  • Ahmad, R, Raina, D, Trivedi, V, Ren, J, Rajabi, H, Kharbanda, S. (2007). MUC1 Oncoprotein Activates the IkappaB Kinase Beta Complex and Constitutive NF-kappaB Signalling. Nat Cell Biol. 9. 1419
  • Ahmad, R, Raina, D, Joshi, MD, Kawano, T, Ren, J, Kharbanda, S. (2009). MUC1-C Oncoprotein Functions as a Direct Activator of the Nuclear Factor-kappaB p65 Transcription Factor. Cancer Res. 69. 7013
  • Boyce, BF, Xiu, Y, Li, J, Xing, L, Yao, Z. (2015). NF-kappaB-Mediated Regulation of Osteoclastogenesis. Endocrinol Metab (Seoul, Korea). 30. 35-44
  • Budak, F, Bal, SH, Tezcan, G, Akalın, H, Goral, G, Oral, HB. (2016). Altered Expressions of miR-1238-3p, miR-494, miR-6069, and miR-139-3p in the Formation of Chronic Brucellosis. J Immunol Res. 2016. 4591468
  • Scian, R, Barrionuevo, P, Fossati, CA, Giambartolomei, GH, Delpino, MV. (2012). Brucella Abortus Invasion of Osteoblasts Inhibits Bone Formation. Infect Immun. 80. 2333