Detección de Fibrilación Ventricular Mediante Tiempo-Frecuencia y Clasificador KNN sin Extracción de Parámetros

  1. Mjahad, Azeddine
  2. Rosado Muñoz, Alfredo
  3. Bataller Mompeán, Manuel
  4. Francés Víllora, Jose V.
  5. Guerrero Martínez, Juan F.
Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2018

Volume: 15

Issue: 1

Pages: 124-132

Type: Article

DOI: 10.4995/RIAI.2017.8833 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

This work describes new techniques to improve VF detection and its separation from Ventricular Tachycarida (VT) and other rhythms. It is based on time-frequency representation of the ECG and its use as input in an automatic classifier (K-nearest neighbours - KNN) without any further signal parameter extraction or additional characteristics. For comparison purposes, three time-frequency variants are analysed: pseudo Wigner-Ville representation (RTF), grey-scale image obtained from RTF (IRTF), and reduced image from IRTF (reduced IRTF). Four types of rhythms (classes) are defined: ’Normal’ for sinus rhythm, ’VT’ for ventricular tachycardia, ’VF’ for ventricular fibrillation and ’Others’ for the rest of rhythms. Classification results for VF detection in case of reduced IRTF are 88.27% sensitivity and 98.22% specificity. In case of VT, 88.31% sensitivity and 98.80% specificity is obtained, 98.14% sensitivity and 96.82% specificity for normal rhythms, and 96.91% sensitivity and 99.06% specificity for other rhythms. Finally, results are compared with other authors.

Bibliographic References

  • Classen, T. A. C. M., Mecklenbrauker, W. F. G., 1980. The Wigner Distribution: A Tool for Time-Frequency Signal Analysis - Part 2: Discrete-Time Signals. Philips Journal of Research 35, 276–350.
  • Cohen, L., Jul 1989a. Time frequency distributions a review. Proceedings of the IEEE 77 (7), 941–981. https://doi.org/10.1109/5.30749
  • Cohen, L., 1989b. Time-frequency distributions-a review. Proceeding of the IEEE 77 (7), 941–981. https://doi.org/10.1109/5.30749
  • Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., Ahmed, T., 2016. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer Methods and Programs in Biomedicine 127, 52– 63. https://doi.org/10.1016/j.cmpb.2015.12.024
  • Hlawatsch, F., Boudreaux-Bartels, G. F., April 1992. Linear and quadratic time-frequency signal representations. IEEE Signal Processing Magazine 9 (2), 21–67. https://doi.org/10.1109/79.127284
  • Ibaida, A., Khalil, I., Aug 2010. Distinguishing between Ventricular Tachycardia and Ventricular Fibrillation from Compressed ECG Signal in Wireless body Sensor Networks. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. pp. 2013–2016. https://doi.org/10.1109/IEMBS.2010.5627888
  • Jekova, I., 2007a. Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomedical Signal Processing and Control 2 (1), 25 – 33. https://doi.org/10.1016/j.bspc.2007.01.002
  • Jekova, I., 2007b. Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomedical Signal Processing and Control 2 (1), 25–33. https://doi.org/10.1016/j.bspc.2007.01.002
  • Jekova, I., Krasteva, V., 2004. Real time detection of ventricular fibrillation and tachycardia. Physiological measurement 25 (5), 1167. https://doi.org/10.1088/0967-3334/25/5/007
  • Jin, D., Dai, C., Gong, Y., Lu, Y., Zhang, L., Quan, W., Li, Y., 2017. Does the choice of definition for defibrillation and CPR success impact the predictability of ventricular fibrillation waveform analysis? Resuscitation 111, 48 – 54. https://doi.org/10.1016/j.resuscitation.2016.11.022
  • Kabir, M. A., Shahnaz, C., 2012. Denoising of ecg signals based on noise reduction algorithms in emd and wavelet domain. Biomedical Signal Processing and Control l 7 (5). https://doi.org/10.1016/j.bspc.2011.11.003
  • Kao, T.-P., Wang, J.-S., Lin, C.-W., Yang, Y.-T., Juang, F.-C., June 2012. Using bootstrap adaboost with knn for ecg-based automated obstructive sleep apnea detection. In: The 2012 International Joint Conference on Neural Networks (IJCNN). pp. 1–5. https://doi.org/10.1109/IJCNN.2012.6252716
  • Kaur, L., Singh, V., May 2013. Ventricular Fibrillation Detection using Empirical Mode Decomposition and Approximate Entropy. International Journal of Emerging Technology and Advanced Engineering 3 (5), 260–268.
  • Kaur, M., Singh, B., Seema, 2011. Comparison of different approaches for removal of baseline wander from ecg signal. In: Proceedings of the International Conference &Workshop on Emerging Trends in Technology. ICWET'11. ACM, New York, NY, USA, pp. 1290–1294. https://doi.org/10.1145/1980022.1980307
  • Labatut, V., Cherifi, H., May 2011. Accuracy measures for the comparison of classifiers. In: Ali, A.-D. (Ed.), The 5th International Conference on Information Technology. Al-Zaytoonah University of Jordan, amman, Jordan, pp.1,5.
  • Li, Q., Rajagopalan, C., Clifford, G. D., 2014. Ventricular fibrillation and tachycardia classification using a machine learning approach. Biomedical Engineering, IEEE Transactions on 61 (6), 1607–1613.
  • Mahmoud, S. S., Hussain, Z. M., Cosic, I., Fang, Q., 2006. Time-frequency analysis of normal and abnormal biological signals. Biomedical Signal Processing and Control 1 (1), 33 – 43. https://doi.org/10.1016/j.bspc.2006.02.001
  • Martin, W., Flandrin, P., Dec 1985. Wigner-ville spectral analysis of nonstationary processes. IEEE Transactions on Acoustics, Speech, and Signal Processing 33 (6), 1461–1470. https://doi.org/10.1109/TASSP.1985.1164760
  • Mateo, J., Torres, A., Aparicio, A., Santos, J., 2016. An efficient method for ECG beat classification and correction of ectopic beats. Computers and Electrical Engineering 53, 219 – 229. https://doi.org/10.1016/j.compeleceng.2015.12.015
  • Mjahad, A., Rosado-Mu-oz, A., Guerrero-Martinez, J., Bataller-Mompean, M., Frances-Villora, J. V., 2015. ECG Analysis for Ventricular Fibrillation Detection Using a Boltzmann Network. In: Braidot, A., Hadad, A. (Eds.), VI Latin American Congress on Biomedical Engineering CLAIB 2014, Parana, Argentina 29, 30, 31 October 2014. Vol. 49 of IFMBE Proceedings. Springer International Publishing, pp. 532–535. https://doi.org/10.1007/978-3-319-13117-7
  • Murakoshi, N., Aonuma, K., 2013. Epidemiology of arrhythmias and sudden cardiac death in asia. Circulation Journal 77 (10), 2419–2431. https://doi.org/10.1253/circj.CJ-13-1129
  • Othman, M. A., Safri, N. M., Ghani, I. A., Harun, F. K. C., Ariffin, I., 2013. A new semantic mining approach for detecting ventricular tachycardia and ventricular fibrillation. Biomedical Signal Processing and Control 8 (2), 222 – 227.https://doi.org/10.1016/j.bspc.2012.10.001
  • Phong, P. A., Thien, K. Q., Oct 2009. Classification of Cardiac Arrhythmias Using Interval Type-2 TSK Fuzzy System. In: Knowledge and Systems Engineering, 2009. KSE '09. International Conference on. pp. 1–6. https://doi.org/10.1109/KSE.2009.19
  • Poularikas, A. D., 1999. The transforms and applications handbooks. ACRC Handbook published in cooperatio with IEEE Press, Depatment of electrical an computer engineering the univesity of Alabama in Huntsville.
  • Rangayyan, R. M., 2002. Biomedical signal analysis: A case-study approach. In: IEEE Press Series in Biomedical Engineering.
  • Ravindra Pratap Narwaria, S. V., Singhal, P. K., 2011. Removal of baseline wander and power line interference from ecg signal - a survey approach. International Journal of Electronics Engineering 3, 107–111.
  • Rosado, A., Guerrero, J., Bataller, M., Chorro, J., 2001. Fast non-invasive ventricular fibrillation detection method using pseudo wigner-ville distribution. In: Computers in Cardiology 2001. pp. 237–240. https://doi.org/10.1109/CIC.2001.977635
  • Saini, R., Bindal, N., Bansal, P., May 2015. Classification of heart diseases from ecg signals using wavelet transform and knn classifier. In: Computing, Communication Automation (ICCCA), 2015 International Conference on. pp. 1208–1215. https://doi.org/10.1109/CCAA.2015.7148561
  • Sharma, L., Dandapat, S., Mahanta, A., 2010. Ecg signal denoising using higher order statistics in wavelet subbands. Biomedical Signal Processing and Control 5 (3), 214 – 222. https://doi.org/10.1016/j.bspc.2010.03.003
  • Sornmo, L., Laguna, P., 2005. Bioelectrical signal processing in cardiac and neurological applications. In: Elsevier Academic Press.
  • Tan, W., Foo, C. L., Chua, T. W., July 2007. Type-2 Fuzzy System for ECG Arrhythmic Classification. In: Fuzzy Systems Conference, 2007. FUZZIEEE 2007. IEEE International. pp. 1–6. https://doi.org/10.1109/FUZZY.2007.4295478
  • Valenzuela, J. V., 2008. Interpolacion de Formas en Imagenes Usando Morfologia Matematica. Ph.D. thesis, Departamento de Lenguajes, Sistemas Informaticos e Ingeniera de Software Facultad de Informatica Universidad Politecnica de Madrid, Director de Tesis: Jose Crespo del Arco.
  • Viitasalo, M., Karjalainen, J., 1992. Q T intervals at Heart rates From 50 to 120 Beats per Minute During 24 Hour Electrocardiographic Recordings in 100 Healthy Men Effects of Atenolol. American Heart Association 86 (5), 1439–1442. https://doi.org/10.1161/01.CIR.86.5.1439
  • von Borries, R. F., Pierluissi, J. H., Nazeran, H., Jan 2005. Wavelet transformbased ecg baseline drift removal for body surface potential mapping. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. pp. 3891–3894. https://doi.org/10.1109/IEMBS.2005.1615311
  • V.Oppenheim, A., Willsky, A. S., Nawab, S. H., 1998. Signals and systems. Prentice Hall Internationa,Inc, Massachusettes Intitue Technology with Boston Univeristy.
  • Xia, D., Meng, Q., Chen, Y., Zhang, Z., 2014. Classification of Ventricular T achycardia and Fibrillation Based on the Lempel-Ziv Complexity and EMD 8590, 322–329. https://doi.org/10.1007/978-3-319-09330-7_39
  • Xie, H.-B., Zhong-Mei, G., Liu, H., 2011. Classification of Ventricular Tachycardia and Fibrillation Using Fuzzy Similarity-based Approximate entropy. Expert Systems with Applications 38 (4), 3973 – 3981. https://doi.org/10.1016/j.eswa.2010.09.058
  • Yilmaz, B., Arikan, E., Asyali, M. H., April 2010. Use of knn and quadratic discriminant analysis methods for sleep staging from single lead ecg recordings. Biomedical Engineering Meeting (BIYOMUT), 2010 15th National, 1–4. https://doi.org/10.1109/BIYOMUT.2010.5479833
  • Yochum, M., Renaud, C., Jacquir, S., 2016. Automatic detection of p, QRS and t patterns in 12 leads ECG signal based on CWT. Biomedical Signal Processing and Control 25, 46 – 52. https://doi.org/10.1016/j.bspc.2015.10.011