Standardization of commercial cinnamon essential oils by gas chromatography-mass spectrometry analysis

  1. Antolín Cantó Catalá 1
  2. M. Amparo Blázquez Ferrer 1
  1. 1 Universitat de València.
Revue:
Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

ISSN: 1888-8550

Année de publication: 2017

Número: 9

Pages: 13-24

Type: Article

D'autres publications dans: Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

Résumé

The chemical composition of seven Cinnamomum zeylanicum Blume essential oils traded as spices and medicinal items has been determined by gas chromatography-mass spectrometry analysis. Eighty-two compounds accounting for 95.39-99.03% of the total essential oil were identified. Qualitative and quantitative differences were found in the essential oils obtained from dried and powdered cinnamon bark purchased at supermarkets and cinnamon leaf essential oil from a pharmacy. The aromatic compound E-cinnamaldehyde (67.84±3.15%; 67.16±5.05%) was the principal component of the essential oil in commercial cinnamon bark employed as a spice; whereas eugenol was the main compound (81.51±0.21%), in commercial cinnamon leaf essential oil for medicinal purposes. The qualitative and quantitative differences in the analyzed essential oils can affect the organoleptic properties, mainly the spice’s flavor as well as the pharmacological properties of the cinnamon (bark and leaf) essential oils.

Références bibliographiques

  • P. V. Rao, S. H. Gan, Cinnamon: A multifaceted medicinal plant, Evid. Based Complement. Alternat. Med. (2014) 1-12.
  • G. K. Jayaprakasha, L. J. M. Rao, Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum, Crit. Rev. Food Sci. Nutr. 51 (2011) 547-562.
  • Y. Li, D. Kong, X. Lin, Z. Xi, M. Bai, S.Huang, H. Nian, H. Wu, Quality evaluation for essential oil of Cinnamomum verum leaves at different growth stages based on GC-MS, FTIR and microscopy, Food Anal. Methods 9 (2016) 202-212.
  • B. Poaty, J. Lahlah, F. Porqueres, H. Bouafif, Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest, World J. Microbiol. Biotechnol. 31 (2015) 907-919.
  • M. Saleem, H. N. Bhatti, M. I. Jilani, M. A. Hanif, Bioanalytical evaluation of Cinnamomum zeylanicum essential oil, Nat. Prod. Res. 29 (2015) 1857-1859.
  • Y. Li, D. Kong, y H. Wu, Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy, Ind. Crops Prod. 41 (2013) 269-278.
  • S. Chericoni, J. A. Prieto, P. Iacopini, P. Cioni, I. Morelli, In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes, J. Agric. Food Chem. 53 (2005) 4762-4765.
  • H. F. Wang, Y. K. Wang, K.H. Yih, DPPH free-radical scavenging ability, total phenolic content, and chemical composition analysis of forty-five kinds of essential oils, J. Cosmet. Sci. 59 (2008) 509-522.
  • D. Gunawardena, N. Karunaweera, S. Lee, F. van der Kooy, D.G. Harman, R. Raju, L. Bennett, E. Gyengesi, N. J. Sucher, G. Munch., Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds, Food Funct. 6 (2015) 910-919.
  • R. C. da Silveira, L. N. Andrade, R. R. Barreto de Oliveira, D. P. de Sousa, A Review on anti-inflammatory activity of phenylpropanoids found in essential oils, Molecules 19 (2014) 1459-1480.
  • L. K. Chao, F. Hua, H. Y. Hsu, S. S. Cheng, I. F. Lin, C. J. Chen, S. T. Chen, S. T. Chang, Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling, Food Chem. Toxicol 46 (2008) 220-231.
  • S. J. Chen, M. H. Wang, I. J. Chen, Antiplatelet and calcium inhibitory properties of eugenol and sodium eugenol acetate, Gen. Pharmacol. 27 (1996) 629-633.
  • MA. Blázquez, Role of natural essential oils in sustainable agriculture and food preservation. J Sci Res Rep. 14 (2014) 1843-1860.
  • S. Prabuseenivasan, M. Jayakumar, S. Ignacimuthu, In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 6 (2006) 1-8.
  • S. Siddiqua, B. A. Anusha, L. S. Ashwini, P. S. Negi, Antibacterial activity of cinnamaldehyde and clove oil: effect on selected foodborne pathogens in model food systems and watermelon juice, J. Food Sci. Technol.-Mysore. 52 (2015) 5834-5841.
  • Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Quek, Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus, Food Control 59 (2016) 282-289.
  • P. S. X. Yap, T. Krishnan, K.-G. Chan, S. H. E. Lim, Antibacterial mode of action of Cinnamomum verum Bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain, J. Microbiol. Biotechnol. 25 (2015) 1299-1306.
  • Q. Sun, L. Wang, Z. Lu, Y. Liu, In vitro anti-aflatoxigenic effect and mode of action of cinnamaldehyde against aflatoxin B-1, Int. Biodeterior. Biodegrad. 104 (2015) 419-425.
  • N. Khan, S. Shreaz, R. Bhatia, S. I. Ahmad, S. Muralidhar, N. Manzoor, L. A. Khan, Anticandidal activity of curcumin and methyl cinnamaldehyde, Fitoterapia 83 (2012) 434-440.
  • H. M. El-Bassossy, A. Fahmy, y D. Badawy, Cinnamaldehyde protects from the hypertension associated with diabetes, Food Chem. Toxicol. 49 (2011) 3007-3012.
  • Y. L. Xue, H. X. Shi, F. Murad, K. Bian, Vasodilatory effects of cinnamaldehyde and its mechanism of action in the rat aorta, Vasc. Health Risk Manag. 7 (2011) 273-280.
  • L.Y. Chuang, L. Y. Chuang, J. Y. Guh, L. K. Chao, Y. C. Lu, J. Y. Hwang, Y. L. Yang, T. H. Cheng, W. Y. Yang, Y. J. Chien, J. S. Huang, Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines, Food Chem. 133 (2012) 1603-1610.
  • RP. Adams, Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Carol Stream, Illinois, USA: Allure Publishing Corporation 2007.