Un estudio exploratorio sobre el uso de DragnBox Algebra© como una herramienta para la enseñanza de la resolución de ecuaciones
- Gutiérrez-Soto, Juan 1
- Arnau, David 1
- González-Calero, José Antonio 2
-
1
Universitat de València
info
-
2
Universidad de Castilla-La Mancha
info
ISSN: 2171-9098, 0214-4824
Year of publication: 2015
Issue Title: Investigaciones en Pensamiento Numérico y Algebraico e Historia de las Matemáticas y Educación Matemática.
Volume: 30
Issue: 1
Pages: 33-44
Type: Article
More publications in: Ensayos: Revista de la Facultad de Educación de Albacete
Abstract
Over the last decades, several representation systems have been used to improve the learning of the manipulations of algebraic expressions. In addition, the introduction of new technologies in Mathematical Education allowed the simultaneous use of different representation systems. Some of these applications use a physical representation of the equation, as for example, balances or areas, to give some meaning to the algebraic manipulations. However, the use of real models has the difficulty of translating the actions performed in the physical environment to the algebraic language. In this work we analyse the effect of using the program DragonBox Algebra© in a school context. In particular, we study the students’ competence in solving equations when the students return to the world of algebra. We compared the results of two tests taken by the students before and after an intervention in an Initial Professional Qualification Program group. The tests consisted of a set of equations with one or more letters. The results show a significant increase in the post test scores.
Bibliographic References
- Booth, L. R. (1984). Algebra: Children's Strategies and Errors. A Report of the Strategies and Errors in Secondary Mathematics Project. Windsor, United Kingdom: NFER‐NELSON.
- Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61(1‐2), 103‐131.
- Fey, J. T. (1989). Technology and Mathematics Education: A Survey of Recent Developments and Important Problems. Educational Studies in Mathematics, 20(3), 237‐272.
- Filloy, E. y Rojano, T. (1989). Solving Equations: the Transition from Arithmetic to Algebra. For the Learning of Mathematics, 9(2), 19‐25.
- Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317‐326.
- Kaput, J. J. (1998). Representations, Inscriptions, Descriptions and Learning: A Kaleidoscope of Windows. Journal of Mathematical Behavior, 17(2), 265‐281.
- Hegedus, S. y Roschelle, J. (2013). The SimCalc Vision and Contributions: Democratizing Access to Important Mathematics. Dordrecht, The Netherlands: Springer.
- Matz, M. (1982). Towards a process model for high school algebra errors. En D. Gleeman y J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 25‐50). New York: Academic Press.
- McArthur, D., Stasz, C., y Hotta, J. Y. (1987). Learning problem‐solving skills in algebra. Journal of Educational Technology Systems, 15, 303‐324.
- Nicaud, J.‐F., Bouhineau, D., y Chaachoua, H. (2004). Mixing Microworld and CAS features in building computer systems that help students learn algebra. International Journal of Computers for Mathematical Learning, 9(2), 169–211.
- Okan, Z. (2003). Edutainment: is learning at risk? British Journal of Educational Technology, 34 (3), 255‐264.
- Palarea, M. (1998). La adquisición del lenguaje algebraico y la detección de errores comunes cometidos en álgebra por alumnos de 12 a 14 años (Tesis doctoral no publicada). Universidad de La Laguna, La Laguna, España.
- Pirie, S. y Martin, L. (1997). The Equation, the Whole Equation and Nothing but the Equation! One Approach to the Teaching of Linear Equations. Educational Studies in Mathematics, 34(2), 159‐181.
- Rojano, T. (2010). Modelación concreta en álgebra: balanza virtual, ecuaciones y sistemas matemáticos de signos. Números, 75, 5‐20.
- Thomas, O. J. M., Monaghan, J., y Pierce, R. (2004). Computer Algebra Systems and Algebra: Curriculum, Assessment, Teaching and Learning. En K. Stacey, H. Chick, y M. Kendal (Eds.), The Future of the Teaching and Learning of Algebra: The 12th ICMI Study (pp. 155‐186). Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Vlassis, J. (2002). Hindrance or Support for the Solving of Linear Equations with One Unknown. Educational Studies in Mathematics, 49, 341‐359.
- Welham, D. (2008). AI in training (1980‐‐2000): Foundation for the future or misplaced optimism? British Journal of Educational Technology, 39(2), 287‐296