Gauss words and the topology of map germs from R3 to R3

  1. Juan Antonio Moya-Pérez 1
  2. Juan José Nuño-Ballesteros 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
Revista matemática iberoamericana

ISSN: 0213-2230

Año de publicación: 2015

Volumen: 31

Número: 3

Páginas: 977-988

Tipo: Artículo

DOI: 10.4171/RMI/860 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Revista matemática iberoamericana

Resumen

The link of a real analytic map germ f:(R3,0)→(R3,0) is obtained by taking the intersection of the image with a small enough sphere S2ϵ centered at the origin in R3. If ff is finitely determined, then the link is a stable map γγ from S2 to S2. We define Gauss words which contains all the topological information of the link in the case that the singular set S(γ) is connected and we prove that in this case they provide us with a complete topological invariant.