FLEX (Fluorescence Explorer) missionObservation fluorescence as a new remote sensing technique to study the global terrestrial vegetation state

  1. Moreno, J. 1
  2. Alonso, L. 1
  3. Delegido, J. 1
  4. Rivera, J.P. 1
  5. Ruiz-Verdú, A. 1
  6. Sabater, N. 1
  7. Tenjo, C. 1
  8. Verrelst, J. 1
  9. Vicent, J. 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Journal:
Revista de teledetección: Revista de la Asociación Española de Teledetección

ISSN: 1133-0953

Year of publication: 2014

Issue: 41

Pages: 111-119

Type: Article

DOI: 10.4995/RAET.2014.2296 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de teledetección: Revista de la Asociación Española de Teledetección

Sustainable development goals

Abstract

FLEX (Fluorescence EXplorer) is a candidate for the 8th ESA’s Earth Explorer mission. Is the first space mission specifically designed for the estimation of vegetation fluorescence on a global scale. The mission is proposed to fly in tandem with the future ESA´s Sentinel-3 satellite. It is foreseen that the information obtained by Sentinel-3 will be supplemented with that provided by FLORIS (Fluorescence Imaging Spectrometer) onboard FLEX. FLORIS will measure the radiance between 500 and 800 nm with a bandwidth between 0.1 nm and 2 nm, providing images with a 150 km swath and 300 m pixel size. This information will allow a detailed monitoring of vegetation dynamics, by improving the methods for the estimation of classical biophysical parameters, and by introducing a new one: fluorescence. This paper presents the current status of FLEX mission in A/B1 phase and the different ongoing studies, campaigns and projects carried out in support of the FLEX mission.

Bibliographic References

  • ESA, 2013. ESA´s Sentinel satellites. Último acceso: 13 de Marzo, 2014, de http://www.esa.int/Our_Activities/Observing_the_Earth/GMES/Sentinel-3
  • ESA, 2014. 5th International Workshop on Remote Sensing of Vegetation Fluorescence. Último acceso: 13 de Marzo, 2014, de http://www.congrexprojects.com/2014-events/14c04/introduction
  • Corp, L.A., Mcmurtrey, J.E., Middleton, E.M., Mulchi C.L., Chappelle E.W., Daughtry C.S.T., 2003. Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sensing of Environment, 86(4), 470–479. doi:10.1016/S0034-4257(03)00125-1
  • Daumard, F., Champagne, S., Fournier, A., Goulas, Y., Ounis, A., Hanocq, J.-F., Moya, I., 2010. A Field Platform for Continuous Measurement of Canopy Fluorescence. IEEE Transactions on Geoscience and Remote Sensing, 48 (9), 3358–3368. doi:10.1109/TGRS.2010.2046420
  • Dobrowski, S. Z., Pushnik, J. C., Zarco-Tejada, P. J., Ustin, S. L., 2005. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment, 97(3), 403–414. doi:10.1016/j.rse.2005.05.006
  • Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E. Yokota, T., 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38(17), L17706. doi:10.1029/2011GL048738
  • HyFLEX, 2013. ESA´s campaigns at work. Último acceso: 13 de Marzo, 2014, de http://blogs.esa.int/campaignearth/2012/09/06/hyflex-above-the-forest/
  • Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., Middleton, E. M., 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences, 8(3), 637–651. doi:10.5194/bg-8-637-2011
  • Kuze, A., Suto, H., Nakajima, M., Hamazaki, T., 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35), 6716–6733. doi:10.1364/AO.48.006716
  • Maxwell, K., Johnson, G. N., 2000. Chlorophyll fluorescence–a practical guide. Journal of Experimental Botany, 51(345), 659–668. doi:10.1093/jexbot/51.345.659
  • Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10), 2037–2051. doi:10.1016/j.rse.2009.05.003
  • Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of Spectral Fitting Methods for vegetation fluorescence. Remote Sensing of Environment, 114, 363–374.
  • PARCS, 2013. FLEX/S3 Tandem Mission Performance Analysis and Requirements Consolidation Study. Último acceso: 13 de Marzo, 2014, de http://ipl.uv.es/flex-parcs/index.php/news-a-press-1 doi:10.1016/j.rse.2009.09.010
  • Plascyk, J., 1975. The MKII Fraunhofer Line Discriminator. (FLD-II) for airborne and orbital remote sensing of solar stimulated luminescence. Optical Engineering, 14, 339–346. doi:10.1117/12.7971842
  • Plascyk, J., Grabriel, F., 1975. The Fraunhofer Line Discriminator MKII - an airbone instrument for precise and standarized ecological luminescence measurements. IEEE Transactions on Instrumentation and Measurement, 24, 306–313. doi:10.1109/TIM.1975.4314448
  • Rascher, U., Agati, G., Alonso, L., Cecchi, G., Champagne, S., Colombo, R., Zaldei, A., 2009. CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 6(7), 1181–1198. doi:10.5194/bg-6-1181-2009
  • Van Der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil - canopy spectral radiances, photosyntesis, fluorescence, temperature and energy balance. Biogeosciences, 12, 3109-3129. doi:10.5194/bg-6-3109-2009