Influencia de la rodilla en la amortiguación de vibraciones sobre plataforma oscilante
- Alejandro Bruñó-Soler 1
- Leticia Fernández-Martín 1
- Gorka Iturrizaga-Altonaga 1
- Juan Francisco Lisón-Párraga 1
- Pedro Pérez-Soriano 2
- Salvador Llana-Belloch 2
- 1 Universidad CEU Cardenal Herrera. España
- 2 Univesitat de València. España
ISSN: 1696-5043
Año de publicación: 2014
Volumen: 9
Número: 25
Páginas: 17-23
Tipo: Artículo
Otras publicaciones en: Cultura, ciencia y deporte
Resumen
The use of vibrating platforms both in sport and clinical contexts has become much more common, but studies on their safety and efficacy are still scarce. In this cross-sectional study, acceleration in the vertical axis for the head was recorded for 22 healthy subjects (23.7 ± 3.7 years, height = 1.75 ± 0.08 m, mass = 71.63 ± 14.5 kg) who had a low/moderate physical activity level, while standing on an oscillating platform at three different knee angles (180º, 150º and 120º), with three different vibrating frequencies (5, 16, and 27 Hz) and constant amplitude (3 mm). The aim of the study was to evaluate the influence of the position of the knee on the transmission of vibration from the platform to the head. The absorption of the vibration energy from the platform to the head was calculated for the different positions and vibrating frequencies under study. The absorption of the vibration energy increased with every knee flexion angle increment; the higher the vibrating frequency, the more influence the position exerted (p < 0.001). These results suggest that complete knee extension needs to be avoided for a safe physical exercise execution while standing on an oscillating platform that vibrates at a high intensity.
Referencias bibliográficas
- Annino, G., Padua E., Castagna, C., Di Salvo, V., Minichella, S., Tsarpela, O., D'Ottavio, S. (2007). Effect of whole body vibration training on lower limb performance in selected high-level ballet students. Journal of Strength and Conditioning Research, 21(4), 1072-1076.
- Avelar, N. C., Ribeiro, V. G., Mezêncio, B., Fonseca, S. F., Tossige-Gomes, R., da Costa S. J., Lacerda, A.C. (2013). Influence of the knee flexion on muscle activation and transmissibility during whole body vibration. Journal of Electromyography and Kinesiology, 23(4), 844-50.
- Cardinale, M., & Bosco, C. (2003). The use of vibration as an exercise intervention. Exercise and Sport Sciences Reviews, 31(1), 3-7.
- Cardinale, M., & Rittweger, J. (2006). Vibration exercise makes your muscles and bones stronger: Fact or fiction?. The Journal of the British Menopause Society, 12(1), 12-18.
- Cardinale, M., & Wakeling, J. M. (2005). Whole body vibration exercise: are vibrations good for you?. British Journal of Sports Medicine, 39(9), 585-589.
- Cochrane, D., & Stannard, S. (2005). Acute whole body vibration training increases vertical jump and flexibility performance in elite female hockey players. British Journal of Sports Medicine, 39(11), 860-865.
- Edir, M., Vaamonde, D., & Padullés J. M. (2006). Entrenamiento con vi-braciones mecánicas y salud: efectos sobre los sistemas óseo, endo-crino y cardiovascular. Apunts: Educación Física y Deportes, 84, 48-57.
- Ettema, G. J. C., & Huijing, P. A. (1994). Frequency response of rat gas-trocnemius medialis in small amplitude vibrations. Journal of Biome-chanics, 27(8), 1015-1022.
- Fort, A., Sitjà, M., Romero, D., Guerra, M., Bagur, C., Girabent, M., & Lloret, M. (2011). Efectos del entrenamiento vibratorio en personas físicamente activas: revisión sistemática. Revista Internacional de Me-dicina y Ciencias de la Actividad Física y del Deporte, 11(43), 619-649.
- Gómez-Cabello, A., González-Agüero, A., Morales, S., Ara, I., Casajús, J. A., & Vicente-Rodríguez, G. (en prensa). Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. Journal of Science and Medicine in Sport.
- Hamill, J., Derrick, T. R., & Holt, K. G. (1995). Shock attenuation and stride frequency during running. Human Movement Science, 14(1), 45-60.
- Harazin, B., & Grzesik, J. (1998). The transmission of vertical whole-body vibration to the body segments of standing subjects. Journal of Sound and Vibration, 215(4), 775-787.
- ISO-International Organization for Standardization. (1997). Mechanical Vibration and Shock-Evaluation of human exposure to whole body vibration. Part I. General requirements. Geneva, Switzerland. ISO 2631-1.
- Kiiski, J., Heinonen, A., Järvinen, T., Kannus, P., & Sievänen, H. (2008). Transmission of vertical whole body vibration to the human body. Journal of Bone and Mineral Research, 23(8), 1318-1325.
- Kim, W., Voloshin, A. S., Johnson, S. H., & Simkin, A. (1993). Measurement of the impulsive bone motion by skin-mounted accelerometers. Journal of Biomechanical Engineering, 115(1), 47-52.
- Kitazaki, S., & Griffin, M. J. (1995). A data correction method for surface measurement of vibration on the human body. Journal of Biomecha-nics, 28(7), 885-890.
- Lafortune, M. A., Henning, E., & Valiant, G. A. (1995). Tibial shock measured with bone and skin mounted transducers. Journal of Biomecha-nics, 28(8), 989-993.
- Lamont, H. S., Cramer, J. T., Bemben, D. A., Shehab, R. L., Anderson, M. A., & Bemben, M. G. (2010). Effects of adding whole body vibration to squat training on isometric force/time characteristics. Journal of Strength and Conditioning Research, 24(1), 171-183.
- Lau, R.W., Liao, L.R., Yu, F., Teo, T., Chung, R.C., & Pang, M. Y. (2011). The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: A systematic review and meta-analysis. Clinical Rehabilitation, 25(11), 975-988.
- Lisón, J. F., Martí, M., Harto, D., Julián, P., Valero, J., Vera-García, F. J., Llana, S. (2012). Effects of whole body vibration on rectus abdominis activity and transmission of accelerations during a front bridge exercise. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte, 8(28), 127-141.
- Mansfield, N. J., & Griffin, M. J. (2000). Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration. Journal of Biomechanics, 33(8), 933-941.
- Mester, J., Kleinöder, H., & Yue, Z. (2006). Vibration trainings: Benefits and risks. Journal of Biomechanics, 39(6), 1056-1065.
- Mizrahi, J., Verbitsky, O., Isakov, E., & Daily, D. (2000a). Effect of fatigue on leg kinematics and impact acceleration in long distance running. Human Movement Science, 19(2), 139-151.
- Mizrahi, J., Verbitsky, O., & Isakov, E. (2000b). Shock accelerations and attenuation indownhill and level running. Clinical Biomechanics, 15(1), 15-20.
- Nigg, B. M. (1997). Impact forces in running. Current Opinion in Orthopaedics, 8(6), 43-47.
- Pel, J. J., Bagheri, J., van Dam, L. M., van den Berg-Emons, H. J., Hore-mans, H. L., Stam, H. J., & van der Steen, J. (2009). Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Medical Engineering & Physics, 331(8), 937-944.
- Rakheja, S., Dong, R. G., Patra, S., Boileau, P. E., Marcotte, P., & Warren, C. (2010). Biodynamics of the human body under whole-body vibration: Synthesis of the reported data. International Journal of Industrial Ergonomics, 40(6), 710-732.
- Rao, B., Ashley, C., & Jones, B. (1975). Effects of postural changes on the head response of standing subjects to low frequency "constant velocity" spectral inputs. Journal of Sound and Vibration, 31(4), 503-504.
- Rauch, F., Sievanen, H., Boonen, S., Cardinale, M., Degens, H., Felsen-berg, D., Rittweger, J. (2010). Reporting whole-body vibration intervention studies: Recommendations of the international society of musculoskeletal and neuronal interactions. Journal of Musculoskeletal & Neuronal Interactions, 10(3), 193-198.
- Rehn, B., Lidström, J., Skoglund, J., & Lindström, B. (2007). Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scandinavian Journal of Medicine & Science in Sports, 17(1), 2-11.
- Ritzmann, R., Gollhofer, A., & Kramer, A. (2013). The influence of vibration type, frequency, body position and additional load on the neu-romuscular activity during whole body vibration. European Journal of Applied Physiology, 113(1), 1-11.
- Roelants, M., Delecluse, C., & Verschueren, S. (2004). Whole-body-vibration training increases knee-extension strength and speed of movement in older women. Journal of the American Geriatrics Society, 52(6), 901-908.
- Rönnestad, B. (2004). Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats recrea-tionally resistance-trained men. Journal of Strength and Conditioning Research, 18(4), 839-845.
- Russo, C. R., Lauretani, F., Bandinelli, S., Bartali, B., Cavazzini, C., Gu-ralnik, J., & Ferrucci, L. (2003). High-frequency vibration training increases muscle power in postmenopausal women. Archives of Physical Medicine and Rehabilitation, 84(12), 1854-1857.
- Saade, Nour. (2013). Whole-body vibration transmission barefoot and with shoes in athletes and sedentary individuals. (Tesis de maestría, Universi-dad de Concordia). Recuperado de http://spectrum.library.concordia.ca/977076/1/Saade_MSc_S2013.pdf
- Verschueren, S., Roelants, M., Delecluse, C., Swinnen, S., Vanderschue-ren, D., & Boonen, S. (2004). Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: A randomized controlled pilot study. Journal of Bone and Mineral Research, 19(3), 352-359.
- Voloshin, A., Wosk, J., & Brull, M. (1981). Force wave transmission throught the human locomotor system. Journal of Biomechanical Engineering, 103(1), 48-50.
- Wakeling, J. M., & Nigg, B. M. (2001). Modification of soft tissue vibrations in the leg by muscular activity. Journal of Applied Physiology, 90(2), 412-420.
- Wakeling, J. M., Nigg, B. M., & Rozitis, A. I. (2002). Muscle activity in the lower extremity damps the soft-tissue vibrations which occur in response to pulsed and continuous vibrations. Journal of Applied Physiology, 93(3), 1093-1103.