fAPAR estimates over the Iberian Peninsula by the inversion of the 4SAIL 2 radiative transfer model
- Martínez, B. 1
- Albargues, E. 2
- Camacho, F. 2
- Moreno, A. 1
- Gilabert, M A. 1
- 1 Dpt. Física de la Terra i Termodinàmica, Universitat de València
- 2 EOLAB
ISSN: 1133-0953
Año de publicación: 2014
Número: 42
Páginas: 61-78
Tipo: Artículo
Otras publicaciones en: Revista de teledetección: Revista de la Asociación Española de Teledetección
Resumen
El objetivo de este trabajo consiste en la estimación de la fAPAR en la Península Ibérica a partir de datos MODIS. En primer lugar, se ha simulado un conjunto de datos de reflectividades y de fAPAR a partir de los modelos de transferencia radiativa de hoja (PROSPECT) y de cubiertas heterogéneas (4SAIL2). En segundo lugar, se ha entrenado un conjunto de redes neuronales artificiales (RNAs) para obtener mediante inversión la relación entre la fAPAR y las reflectividades simuladas y así calcular, por último, la fAPAR de la Península Ibérica a partir de imágenes de reflectividad de MODIS. Además, se ha analizado la influencia de la configuración de observación e iluminación, nadir y oblicua. La fAPAR estimada se ha comparado con otros productos ya validados. Los resultados ponen de manifiesto que la fAPAR estimada a partir de la combinación (PROSPECT+4SAIL2+Nadir) proporciona, en general, diferencias alrededor del umbral requerido por los usuarios (0.1). Esta combinación se plantea como una alternativa para estimar la fAPAR en la Península Ibérica por su capacidad para caracterizar distintos tipos de cubiertas, así como por la alta variabilidad intra-anual observada en algunos casos.
Referencias bibliográficas
- Bacour, C., Baret, F., Beal, D., Weiss, M., Pavageau, K. 2006. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment, 105(4): 313-325. http://dx.doi.org/10.1016/j.rse.2006.07.014
- Baret, F., Guyot, G. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2-3): 161-173. http://dx.doi.org/10.1016/0034-4257(91)90009-U
- Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M. et al. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from
- VEGETATION. Part 1: Principles of the algorithm. Remote Sensing of Environment, 110(3): 275-286. http://dx.doi.org/10.1016/j.rse.2007.02.018
- Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B. 2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137: 299-309. http://dx.doi.org/10.1016/j.rse.2012.12.027
- Bishop, C.M. 1996. Neural networks: a pattern recognition perspective. Clarendon press, 482 pp.
- Bolle, H.-J., Eckardt, M., Koslowsky, D., Maselli, F., Meliá-Miralles, J., Menenti, M. 2006. Mediterranean land-surface processes assessed from space. Berlin:Springer, 760 pp. http://dx.doi.org/10.1007/978-3-540-45310-9
- Camacho, F., Cernicharo, J., Lacaze, R., Baret, F., Weiss, M. 2013. GEOV1: LAI, FAPAR Essential Climate Variables and FCOVER global time series capitalizing over existing products. Part 2: validation and intercomparison with reference products. Remote Sensing of Environment, 137: 310-329. http://dx.doi.org/10.1016/j.rse.2013.02.030
- Cernicharo, J. 2010. Estimación del contenido de agua de la vegetación mediante inversión de modelos de transferencia radiativa a partir de redes neuronales. Proyecto final de carrera, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Valencia. 65 pp.
- Chen, J.M., Liu, J., Leblanc, S.G., Lacaze, R., Roujean, J.L. 2003. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 84(4): 516-525. http://dx.doi.org/10.1016/S0034-4257(02)00150-5
- Dawson, T.P., Curran, P.J. Plummer, S.E. 1998. LIBERTY - Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra. Remote Sensing of Environment, 65(1): 50-60. http://dx.doi.org/10.1016/S0034-4257(98)00007-8
- Eberle, A. 2007. Design of an optimized spectral index to estimate vegetation water content for the Iberian Peninsula using MODIS data. Proyecto fin de carrera. Università degli Studi di Trento, 108 pp.
- Féret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin, S.L., Le Maire, G., Jacquemoud, S. 2008. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments, Remote Sensing of Environment, 112(6): 3030-3043. http://dx.doi.org/10.1016/j.rse.2008.02.012
- Ganapol, B.D., Johnson, L.F., Hlavka, C.A., Peterson, D.L. Bond, B. 1998. LCM2: A coupled leaf/ canopy radiative transfer model. Remote Sensing of Environment, 70(2): 153-166. http://dx.doi.org/10.1016/S0034-4257(99)00030-9
- García-Haro, F.J., Camacho, F., Meliá, J. 2008. Vegetation Parameters Validation Report (VEGA VR), SAF/LAND/UV/VR VEGA/2.1, January 2008, 91 pp. Available on-line at http://landsaf. meteo.pt (accessed on 11 Novembre 2014). GCOS. 2006. Systematic observation requirements for satellite-based products for climate. (GCOS-107.WMO/TD No. 1338). September 2006. 103 pp. Geneve (Switzerland) Disponible en http://www.wmo.int/pages/prog/gcos/Publications/gcos-107.pdf (accessed on 11 Novembre 2014).
- GCOS. 2010. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). GCOS-138 (GOOS-184, GTOS-76, WMO-TD/No. 1523), 180 pp. Geneve (Switzerland) Disponible en http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf (accessed on 11 Novembre 2014).
- Gilabert, M.A., Meliá, J. 1990. Usefulness of the temporal analysis and the normalized difference in the study of rice by means of Landsat-5 TM
- images: identification and inventory of rice fields. Geocarto International, 5(4): 17-26. http://dx.doi.org/10.1080/10106049009354278
- Gobron, N., Pinty, B., Verstraete, M., Govaerts, Y.,1999. The MERIS Global Vegetation Index (MGVI): description and preliminary application. International Journal of Remote Sensing, 20(9): 1917-1927. http://dx.doi.org/10.1080/014311699212542
- Gobron, N., Pinty, B., Aussedat, O., Chen, J.M., Cohen, W.B., Fensholt, R., et al. 2006. Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from Sea-WiFS against ground-based estimations. Journal of Geophysical Research, 111 (D13):110, http://dx.doi.org/10.1029/2005JD006511
- Haykin. S.S., 2009. Neural networks and learning machines, Vol. 10. 2009: Prentice Hall Upper Saddle River, NJ.
- Jacquemoud, S., Baret, F., 1990. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2): 75-91. http://dx.doi.org/10.1016/0034-4257(90)90100-Z
- Jacquemoud, S., Verhoef W., Baret, F., Bacour, C., et al., 2009. PROSPECT + SAIL Models: a review of use for vegetation characterization, Remote Sensing of Environment, 113: S56-S66. http://dx.doi.org/10.1016/j.rse.2008.01.026
- Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Dine, D.J., Running, S.W. 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research, 103(D24): 32257-32275. http://dx.doi.org/10.1029/98JD02462
- Kuusk, A. 1995. A Markov chain model of canopy reflectance. Agricultural and Forest Meteorology, 76(3-4): 221-236. http://dx.doi.org/10.1016/0168-1923(94)02216-7
- Leprieur, D., Verstraete, M.M., Pinty, B. 1994. Evaluation of the performance of various vegetation indices to retrieve cover from AVHRR data. Remote Sensing Reviews, 10(4): 265-284. http://dx.doi.org/10.1080/02757259409532250
- Lourakis, M.I.A. 2005. A Brief Description of the Levenberg–Marquardt Algorithm Implemented by Levmar. Disponible en http://users.ics.forth.
- gr/~lourakis/levmar/levmar.pdf (accessed on 11 Novembre 2014).
- Lutch, W., Roujean, J.L. 2000. Considerations in the parametric modeling of BRDF and albedo from multiangle satellite sensor observations. Remote Sensing Reviews, 18(2-4): 343-380. http://dx.doi.org/10.1080/02757250009532395
- Madsen, K., Nielsen, H.B., Tingleff, O. 2004. Methods for Non-linear Least Squares Problems, second ed. IMM, Technical University of Denmark, 50 pp. Disponible en http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215 (accessed on 11 Novembre 2014).
- Martínez B., Camacho, F., Verger, A., García-Haro, F.J., Gilabert, M.A. 2013. Intercomparison and quality assessment of MERIS, MODIS and SEVIRI FAPAR products over the Iberian Peninsula. International Journal of Applied Earth Observation and Geoinformation, 21: 463-476. http://dx.doi.org/10.1016/j.jag.2012.06.010
- Mccallum, I., Wagner, W., Schmullius, C., Shvidenko, A., Obersteiner, M., Fritz, S., Nilsson, S. 2010. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sensing of Environment, 114(5): 941-949. http://dx.doi.org/10.1016/j.rse.2009.12.009
- Moreno, A., 2014. Retrieval and assessment of CO2 uptake by Mediterranean ecosystems using remote sensing and meteorological data. Tesis Doctoral, Universidad de Valencia, 172 pp.
- Myneni, R.B., Nemani, R.R., Running, S.W. 1997. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transaction on Geoscience and Remote Sensing, 35(6): 1380-1393. http://dx.doi.org/10.1109/36.649788
- Pérez-Hoyos, A., García-Haro, F.J., San Miguel Ayanz, J. 2012. A methodology to generate a synergetic land-cover map by fusion of different land-cover products. International Journal of Applied Earth
- Observation and Geoinformation, 19: 72-87. http://dx.doi.org/10.1016/j.jag.2012.04.011
- Rosema, A., Verhoef, W., Noorbergen, H., Borgesius, J.J. 1992. A new forest light interaction model in support of forest monitoring. Remote Sensing of Environment, 42(1): 23-41. http://dx.doi.org/10.1016/0034-4257(92)90065-R
- Roujean, J.L., Bréon, F.M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384. http://dx.doi.org/10.1016/0034-4257(94)00114-3
- Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang T., et al. 2002. First operational BRDF, albedo and Nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1-2): 135-148. http://dx.doi.org/10.1016/S0034-4257(02)00091-3
- Snyman, J.A. 2005. Practical Mathematical Optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms. Springer Publishing, 257 pp.
- Verger, A., Baret, F., Weiss, M. 2008. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products, Remote Sensing of Environment, 112(6): 2789-2803. http://dx.doi.org/10.1016/j.rse.2008.01.006
- Verhoef, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment, 16(2): 125-141. http://dx.doi.org/10.1016/0034-4257(84)90057-9
- Verhoef, W., Bach, H. 2007. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment, 109(2): 166-182. http://dx.doi.org/10.1016/j.rse.2006.12.013