El análisis factorial exploratorio de los ítemsuna guía práctica, revisada y actualizada
- Lloret Segura, Susana
- Ferreres Traver, Adoración
- Hernández Baeza, Ana
- Tomás Miguel, Inés
ISSN: 0212-9728, 1695-2294
Año de publicación: 2014
Volumen: 30
Número: 3
Páginas: 1151-1169
Tipo: Artículo
Otras publicaciones en: Anales de psicología
Resumen
Exploratory Factor analysis is one of the techniques used in the development, validation and adaptation of psychological measurement in-struments. Its use spread during the 1960s and has been growing exponen-tially thanks to the advancement of information technology. The criteria used, of course, have also evolved. But the applied researchers, who use this technique as a routine, remain often ignorant of all this. In the last few decades numerous studies have denounced this situation. There is an ur-gent need to update the classic criteria. The incorporation of the most suit-able criteria will improve the quality of our research. In this work we review the classic criteria and, depending on the case, we also propose current cri-teria to replace or complement the former. Our objective is to offer the in-terested applied researcher updated guidance on how to perform an Ex-ploratory Item Factor Analysis, according to the �post-Little Jiffy� psy-chometrics. This review and the guide with the corresponding recommen-dations have been articulated in four large blocks: 1) the data type and the matrix of association, 2) the method of factor estimation, 3) the number of factors to be retained, and 4) the method of rotation and allocation of items. An abridged version of the complete guide is provided at the end of the article
Referencias bibliográficas
- Abad, F.J., Olea, J., Ponsoda, J., y García, C. (2011). Medición en ciencias sociales y de la salud. Madrid. Síntesis.
- Anstey, E. (1959). Test de Dominós. Buenos Aires: Paidós.
- Anderson, J. C., y Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended twostep approach. Psychological Bulletin, 103(3), 411-423.
- Arrindell, W. A. y van der Ende, J. (1985). An empirical test of the utility of the observationstovariables ratio in factor and components analysis. Applied Psychological Measurement, 9, 165-178.
- Asparouhov, T. y Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397-438.
- Bandalos, D. L. y Finney, S. J. (2010). Factor Analysis: Exploratory and Confirmatory. En G. R. Hancock y R. O. Mueller (Eds.), Reviewer's guide to quantitative methods. Routledge: New York.
- Barrett, P. T. y Kline, P. (1981). The observation to variable ratio in factor analysis. Personality Study in Group Behavior, 1, 23-33.
- Basto, M. y Pereira, J.M. (2012). An SPSS R-Menu for ordinal factor analysis. Journal of Statistical Software, 46, 1-29. Recuperado de: http://www.jstatsoft.org/v46/i04/paper.
- Beavers, A. S., Lounsbury, J. W., Richards, J. K., Huck, S. W., Skolits, G. J., & Esquivel, S. L. (2013). Practical Considerations for Using Exploratory Factor Analysis in Educational Research. Practical Assessment, Research & Evaluation, 18(6). Recuperado de: http://pareonline.net/getvn.asp?v=18&n=6.
- Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley.
- Borsboom, D., Mellenbergh, G. J. y Van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203-219.
- Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71, 425-440.
- Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.
- Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111-150.
- Browne, M. W. y Cudeck, R. (1993). Alternative ways of assessing model fit. En K. A. Carroll, J. B. (1953). An analytic solution for approximating simple structure in factor analysis. Psychometrika, 18, 23-28.
- Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276
- Clarkson, D. B. y Jennrich, R. I. (1988) Quartic rotation criteria algorithms. Psychometrika, 53, 251-259.
- Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304-1312.
- Comrey, A. L. y Lee, H. B. (1992). A first course in factor analysis. Hillsdale, NJ: Erlbaum.
- Conway, J. M. y Huffcutt, A. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6(2), 147-168.
- Costello, A. B. y Osborne, J. (2005). Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10(7), 1-9. Recuperado de: http://pareonline.net/getvn.asp?v=10&n=7
- Courville, T. y Thompson, B. (2001). Use of structure coefficients in published multiple regression articles: Beta is not enough. Educational and Psychological Measurement, 61, 229-248.
- Cureton, E. E. y Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40, 183-195.
- Curran, P. J., West, S. G. y Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29.
- Edwards, J. R. (2011). The Fallacy of formative measurement. Organizational Research Methods, 14, 370-388
- Embretson, S. E. y Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum.
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., y Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299.
- Ferrando, P. J. y Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicológo, 31(1), 18-33.
- Ferrando, P. J. y Lorenzo, U. (2000). Unrestricted versus restricted factor analysis of multidimensional test items: some aspects of the problem and some suggestions. Psicologica, 21, 301-323.
- Ferrando, P. J. y Lorenzo-Seva, U. (2013). Unrestricted item factor analysis and some relations with item response theory. Recuperado de http://psico.fcep.urv.es/utilitats/factor/.
- Ferrando, P. J., Varea, M. D. y Lorenzo, U. (1999). Evaluación psicométrica del cuestionario de ansiedad y rendimiento (CAR) en una muestra de escolares. Psicothema, 11 (1), 225-236.
- Finch, H. (2006). Comparison of the performance of varimax and promax rotations: Factor structure recovery for dichotomous items. Journal of Educational Measurement, 43(1), 39-52.
- Finney, S. J. y DiStefano, C. (2006). Nonnormal and categorical data in structural equation models. In G.R. Hancock y R.O. Mueller (Eds.), A second course in structural equation modeling (pp. 269-314). Greenwich, CT: Information Age.
- Flora, D. V. y Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466-491.
- Flora, D. B., LaBrish, C. y Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Quantitative Psychology and Measurement, 3 (55), 1-21.
- Ford, J. K., MacCallum, R. C. y Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, 291-314.
- Forero, C. G, Maydeu-Olivares, A. y Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625-641.
- Gorsuch, R. L. (1983). Factor analysis (2nd. ed.). Hillsdale, NJ: Erlbaum.
- Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68, 532-560.
- Gorsuch, R. L. (1997b). New procedure for extension analysis in exploratory factor analysis. Educational and Psychological Measurement, 57, 725-740
- Guadagnoli, E. y W. F. Velicer (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103(2), 265-275.
- Hair, J. F., Anderson, R. E., Tatham, R. L. y Black, W. C. (2005). Multivariate data analysis. New York: Prentice All International.
- Hancock, G. R. y Mueller, O. (2010). The Reviewer's Guide to Quantitative Methods in the Social Sciences. (3rd ed.). New York, NY: Routledge.
- Harman, H. H. (1980). Análisis factorial moderno. Madrid: Saltés.
- Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago, IL: University of Chicago Press.
- Harman, H. H. y Jones, W. H. (1966). Factor analysis by minimizing residuals (Minres). Psychometrika, 31, 351-369.
- Hayton, J. C., Allen, D. G. y Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205. Recuperado de: http://orm.sagepub.com/content/7/2/191.
- Hendrickson, A. E. y White, P. O. (1964). PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 65-70.
- Henson, R. K. y Roberts, J. K. (2006). Use of exploratory factor analysis in published research. Common errors and some comment on improved practice. Educational and Psychological Measurement, 66(3), 393-416.
- Hinkin, T. R. (1995). A Review of scale development practices in the study of organizations. Journal of Management, 21(5), 967-988.
- Hogarty, K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M. y Munford, K. R. (2005). The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination. Educational and Psychological Measurement, 65, 202-226.
- Holgado-Tello, F. C., Chacon-Moscoso, S., Barbero, I. y Vila-Abad, E. (2010). Polycoric versus Pearson correlationsin exploratory and confirmatory factor analysis of ordinal variables. Quality and Quantity, 44 (1), 153-166.
- Horn, J. L. (1965). A rationale and test for the number of factors in a factor analysis. Psychometrika, 30, 179-185.
- Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psycholgy, 24, 417-441, 498-520.
- Hu, L. T. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
- Izquierdo, I., Olea, J. y Abad, F. J. (2013, Septiembre). ¿Se aplica correctamente el análisis factorial exploratorio en la investigación psicológica? Comunicación presentada al XIII Congreso de Metodología de las Ciencias Sociales y de la Salud. Tenerife. España. Resumen recuperado de http://13congresometodologia.es/programa/programacientifico/programacientificogeneral/
- Jennrich, R. I. y Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 31, 313-323.
- Jollife, I. T. (2002). Principal component analysis. Second edition, New York: Springer-Verlag.
- Jöreskog, K. G. y Sörbom, D. (2007). LISREL 8.80. [Computer Software]. Lincolnwood, IL: Scientific Software International, Inc.
- Jöreskog, K. G. (1977). Factor analysis by leastsquares and maximumlikelihood methods. En K. Enslein, A. Ralston y H.S. Wilf (Eds.), Statistical methods for digital computers, Vol. 3. New York. Wiley
- Jung, S. (2013). Exploratory factor analysis with small sample sizes: A comparison of three approaches. Behavioural Processes, 97, 90-95
- Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.
- Kaiser, H. F. (1970). A second generation Little Jiffy. Psychometrika, 35, 401-415.
- Kelley, T. L. (1935). Essential traits of mental life. Harvard Studies in Education, vol. 26. Harvard University Press, Cambridge.
- Kim, J. O. y Mueller, C. W. (1978). Factor analysis. Beverly Hills, CA: Sage
- Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd Edition ed.). New York: The Guilford Press.
- Lawley, D. N. y Maxwell, A. E. (1971). Factor analysis as a statistical method. London: Butterworths.
- Ledesma, R. D., y Valero-Mora, P. (2007). Determining the Number of Factors to Retain in EFA: An easytouse computer program for carrying out Parallel Analysis. Practical Assessment Research & Evaluation, 12(2). Recuperado de: http://pareonline.net/getvn.asp?v=12&n=2
- Lee, C.-T., Zhang, G., y Edwards, M.C. (2012). Ordinary least squares estimation of parameters in exploratory factor analysis with ordinal data. Multivariate Behavioral Research, 47, 314-339.
- Lorenzo-Seva, U. (1999). Promin: A Method for Oblique Factor Rotation. Multivariate Behavioral Research, 34, 347-365.
- Lorenzo-Seva, U. (2000). The weighted oblimin rotation. Psychometrika, 65, 301-318.
- Lorenzo-Seva, U. y Ferrando, P. J. (2006). FACTOR: a computer program to fit the exploratory Factor Analysis model. Behavioral Research Methods, Instruments & Computers, 38(1), 88-91.
- Lorenzo-Seva, U. (2013). How to report the percentage of explained common variance in exploratory factor analysis. Recuperado de: http://psico.fcep.urv.es/utilitats/factor/
- Lorenzo-Seva, U. y Ferrando, P. J. (2012a). TETRA-COM: a comprehensive SPSS program for estimating the thetrachoric correlation. Behavioral Research Methods, 44(4), 1191-1196.
- Lorenzo-Seva, U. y Ferrando, P. (2012b). Manual of the program FACTOR v. 8.10. Recuperado de: http://psico.fcep.urv.es/utilitats/factor/
- Lorenzo-Seva, U. y Ferrando, P. J. (2013). FACTOR 9.2: A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models, Applied Psychological Measurement, 37-6, 497-498. Recuperado de: http://apm.sagepub.com
- Lorenzo-Seva, U., Timmerman, M. E. y Kiers, H. A. L. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340-364.
- Marsh, H. W., Richards, G. E., Johnson, S., Roche, S. y Tremayne, P. (1994). Physical Self-Description Questionnaire: Psychometric properties and a multitraitmultimethod analysis of relations to existing instruments. Journal of Sport and Exercise Psychology, 16, 270-305.
- Marsh, H. W., Morin, A. J. S., Parker, P. D. y Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology. doi/abs/10.1146/annurevclinpsy-032813-153700
- Marsh, H. W., Liem, G. A. D., Martin, A. J., Morin, A. J. S. y Nagengast, B. (2011). Measurement fruitfulness of exploratory structural equation modelling (ESEM) in addressing key substantive issues in motivation and engagement research. Journal of Psychoeducational Assessment, 29, 322-346. doi:10.1080/09243453.2013.812568
- Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U. y Nagengast, B. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22(3), 471-491. doi:10.1037/a0019227
- Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S. y Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students' evaluations of university teaching. Structural Equation Modeling, 16, 439-476. doi:10.1080/10705510903008220
- Marsh, H. W., Hau, K. T. y Wen, Z. (2004). In search of Golden Rules: Comment on hypothesistesting approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's findings. Structural Equation Modeling, 11(3), 320-341.
- Martínez, J. A. y Martínez, L. (2009). El análisis factorial confirmatorio y la validez de escalas en modelos causales. Anales de Psicología, 25(2), 368-374. Recuperado de: http://www.redalyc.org/
- Matsunaga, M. (2010). How to factoranalyze your data right: Do's, don'ts, and howto's. International Journal of Psychological Research, 3 (1), 97-110. Recuperado de: http://www.redalyc.org/
- MacCallum, R. C., Widaman, K. F., Preacher, K. y Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611-637.
- MacCallum, R. C., Widaman, K. F., Zhang, S. y Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84-99.
- McDonald, R. P. (1985). Factor Analysis and Related Methods. Hillsdale, NJ: LEA.
- McDonald R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
- McDonald R. P. (2000). A basis for multidimensional item response theory. Applied Psychological Measurement, 24, 99-114.
- McDonald, R. P. (2005). Semiconfirmatory factor analysis: The example of anxiety and depression. Structural Equation Modeling, 12, 163-172.
- McDonald, R. P. y Ahlawat, K. S. (1974). Difficulty factors in binary data. British Journal of Mathematical and Statistical Psychology, 27, 82-99.
- Morin, A. J. S., Marsh, H. W., y Nagengast, B. (2013). Exploratory structural equation modeling. En G. R. Hancock, y R. O. Mueller, (Eds.), Structural equation modeling: A second course (pp. 395-440). Charlotte, NC: Information Age Publishing, Inc.
- Mulaik, S. A. (1972). The foundations of factor analysis. New York: McGraw Hill.
- Mundfrom, D. J., Shaw, D. G. y Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159-168.
- Muthen, B., y Asparouhov, T. (2010). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.
- Muthén, B. y Kaplan D. (1985). A comparison of some methodologies for the factor analysis of nonnormal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189. Recuperado de: http://www.statmodel.com/
- Muthén, B. y Kaplan D. (1985). A comparison of some methodologies for the factor analysis of nonnormal Likert variables: A note on the size of the mode,. British Journal of Mathematical and Statistical Psychology, 45, 19-30. Recuperado de: http://www.statmodel.com/
- Muthén, L. K. y Muthén, B. O. (2007). Mplus user's guide (5th ed.). Los Angeles, CA: Muthén& Muthén.
- Muthén, L. K. y Muthén, B. O. (1998-2012). Mplus User's Guide. (7th ed.) Los Angeles, CA: Muthén & Muthén
- Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.
- O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.
- O'Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analysis. Applied Psychological Measurement, 25, p. 88.
- Park, H. S., Dailey, R. y Lemus, D. (2002). The Use of exploratory factor analysis and principal components analysis in communication research. Human Communication Research, 28 (4), 562-577.
- Peres-Neto, P. R., Jackson, D. A. y Somers, K. M. (2005). How many principal components? Stopping rules for determining the number of nontrivial axes revisited. Computational Statistics and Data Analysis, 49, 974-997. Recuperado de: http://labs.eeb.utoronto.ca/
- Pérez, E. y Medrano, L. (2010). Análisis Factorial Exploratorio: Bases Conceptuales y Metodológicas. Revista Argentina de Ciencias del Comportamiento, 2(1), 58-66.
- Preacher, K. J. y MacCallum, R. C. (2003). Repairing Tom Swift's electric factor analysis machine. Understanding Statistics, 2, 13-32.
- Revelle, W. (2014). Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, Illinois, USA. Recuperado de: http://CRAN.R-project.org/
- Sass, D. A. y Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73-103.
- Satorra, A., y Bentler, EM. (1994). Corrections to test statistics and standard enors in covariance structure analysis. En A. von Eye y C.C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage
- Seldmeier, P. y Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105, 309-316.
- Steiger, J. H. y Lind, J. M. (1980, May). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA. Recuperado de: http://www.statpower.net/
- Tabachnick, B. G. y Fidell, L. S. (2001). Using multivariate statistics. Boston: Allyn and Bacon.
- Tanaka, J. S. y Huba, G. H. (1989) A general coefficient of determination for covariance structure models under arbitrary GLS estimation. British Journal of Mathematical and Statistical Psychology, 42, 233-239.
- Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.
- Thompson, B. y Borrello, G. M. (1985). The importance of structure coefficients in regression research. Educational and Psychological Measurement, 45, 203-209.
- Thurstone, L. L. (1947). Multiplefactor analysis. Chicago: The University Chicago Press.
- Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327.
- Velicer, W. F. y Fava, J. L. (1998). Effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3(2), 231-251.
- Velicer, W. F. y Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25(1), 1-28.
- Velicer, W.F., Eaton, C. A., y Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. En R. D. Goffin y E. Helmes (Eds.), Problems and solutions in human assessment: Honoring Douglas N. Jackson at seventy. (pp. 41-71). Norwell, MA: Kluwer Academic. Recuperado de: http://link.springer.com/
- Vigil-Colet, A., Canals, J., Cosí, S., Lorenzo-Seva, U., Ferrando, P. J., Hernández-Martínez C., hellip Domenech, E. (2009). The factorial structure of the 41-item version of the screen for child anxiety related emotional disorders (SCARED) in a spanish population of 8 to 12 yearsold. International Journal of Clinical and Health Psychology, 9(2), 313-327. Recuperado de: http://scholar.google.com/citations
- West, S. G., Finch, J. F. y Curran, P. J. (1995). Structural equation models with nonnormal variables. Problems and remedies. En R. H. Hoyle (Ed.). Structural equation modeling: Concepts, issues and applications. (pp. 56-75). Newbury Park, CA: Sage.
- Williams, B., Brown, T., y Onsman, A. (2010). Exploratory factor analysis: A fivestep guide for novices. Australasian Journal of Paramedicine, 8(3), 1-13.
- Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. Albany: State University of New York Press.
- Yuan, K.H., y Bentler, P. M. (1998). Normal theory based test statistics in structural equation modeling. British Journal of Mathematical and Statistical Psychology, 51, 289-309.
- Zwick, R.W. y Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.