La importancia de la producción fitoplanctónica para los balances de carbono en un humedal semiárido de llanura de inundación

  1. Álvarez Cobelas, Miguel
  2. Angeler, David G.
  3. Cirujano Bracamonte, Santos María
  4. Rojo, Carmen
Revista:
Anales del Jardín Botánico de Madrid

ISSN: 0211-1322

Año de publicación: 2011

Volumen: 68

Número: 2

Páginas: 253-267

Tipo: Artículo

DOI: 10.3989/AJBM.2271 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Anales del Jardín Botánico de Madrid

Resumen

La producción de fitoplancton (PF) en los humedales no se mide tan a menudo como la de los macrófitos. En este estudio se lleva a cabo un trabajo de tres años durante un periodo de gran inun dación en un humedal de llanura de inundación (Parque Nacional de Las Tablas de Daimiel) a fin de determinar la producción neta del fitoplancton, su heterogeneidad espacial y los factores que la controlan. También comparamos la PF con la producción primaria de las comunidades de macrófitos, lo cual nos permite estimar las cantidades de carbono que fija cada comunidad vegetal. Todas las variables relacionadas con la PF mostraron mucha variabilidad espacial y temporal, lo cual dio como resultado una escasa relación entre la producción de unos lugares y otros, incluso cuando la inundación los conectó a todos. La PF neta estuvo entre un 25 y un 36% de la producción de los macrófitos sumergidos y entre un 3 y un 10% de la producción de los helófitos. La PF neta estuvo controlada por algas de diferente tamaño en los distintos sitios del humedal. Ni los nutrientes ni el zooplancton afectaron a la PF neta o a su productividad. La gran variabilidad espacio-temporal de la PF en los humedales se debe a una serie de procesos complejos que afectan al ambiente luminoso subacuático. Las cantidades de carbono fijadas por el fitoplancton a menudo superan a las de los macrófitos sumergidos y pueden llegar a suponer entre un 4 y un 37% del carbono de los helófitos. Considerada normalmente como marginal, la PF en las aguas libres de los humedales debería tenerse en cuenta a la hora de determinar con precisión la cantidad de carbono de los humedales, especialmente en periodos de gran inundación que a menudo dan como resultado cambios en el balance de carbono

Referencias bibliográficas

  • Álvarez-Cobelas, M. & Jacobsen, B.A. 1992. Hypertrophic phytoplankton: an overview. Freshwater Forum 2: 184-199.
  • Álvarez-Cobelas, M. & Rojo, C. 1994. Spatial, seasonal and long term variability of phytoplankton photosynthesis in lakes. Journal of Plankton Research 16: 1691-1716. http://dx.doi.org/10.1093/plankt/16.12.1691
  • Álvarez-Cobelas, M. & Cirujano, S. (eds.) 1996. Las Tablas de Daimiel: ecología acuática y sociedad. Ministerio de Medio Ambiente. Madrid.
  • Álvarez-Cobelas, M., Cirujano, S. & Sánchez-Carrillo, S. 2001. Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biological Conservation 97: 89-97. http://dx.doi.org/10.1016/S0006-3207(00)00102-6
  • Álvarez-Cobelas, M. & Cirujano, S. 2007. Multilevel responses of emergent vegetation to environmental factors in a semiarid floodplain. Aquatic Botany 87: 49-60. http://dx.doi.org/10.1016/j.aquabot.2007.03.002
  • Álvarez-Cobelas, M., Sánchez-Carrillo, S. & Cirujano, S. 2007. Strong site effects dictate nutrient patterns in a Mediterranean floodplain. Wetlands 27: 326-336. http://dx.doi.org/10.1672/0277-5212(2007)27[326:SSEDNP]2.0.CO;2
  • Álvarez-Cobelas, M., Sánchez-Carrillo, S., Cirujano, S. & Angeler, D.G. 2010. A story of the wetland water quality deterioration: salinization, pollution, eutrophication and siltation. In: Sánchez-Carrillo, S. & Angeler, D.G. (eds.), Ecology of threatened semiarid Wetlands: Long-term Research in Las Tablas de Daimiel: 109-133. Springer Verlag. Berlin.
  • Angeler, D.G., Álvarez-Cobelas, M., Rojo, C. & Sánchez-Carrillo, S. 2000. The significance of water inputs on plankton biomass and trophic relationships in a semiarid freshwater wetland. Journal of Plankton Research 22: 2075-2094. http://dx.doi.org/10.1093/plankt/22.11.2075
  • Angeler, D.G., Álvarez-Cobelas, M., Sánchez-Carrillo, S. & Rodrigo, M.A. 2002. Assessment of exotic fish impacts on water quality and zooplankton in a degraded semi-arid floodplain wetland. Aquatic Sciences 64: 76-86. http://dx.doi.org/10.1007/s00027-002-8056-y
  • Angeler, D.G., Álvarez-Cobelas, M., Rojo, C. & Sánchez-Carrillo, S. 2010. Phytoplankton community similarity in a semiarid floodplain under contrasting hydrological connectivity regimes. Ecological Research: in press DOI: 10.1007/s11284-009-0681-7. APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington D.C.
  • Barber, R.T. & Hilting, A.K. 2002. History of the study of plankton productivity. In: Williams, P.J. Le B, Thomas, D.N. & Reynolds, C.S. (eds.), Phytoplankton Productivity: 16-43. Blackwell. Oxford.
  • Bender, M., Grande, K., Johnson, K., Marra, J., Williams, P.J. LeB, Sieburth, J., Pilson, M., Langdon, C., Hitchcock, G., Orchardo, J., Hunt, C., Donaghay, P. & Heinemann, K. 1987. A comparison of four methods for determining planktonic primary production. Limnology and Oceanography 32: 1085-1098. http://dx.doi.org/10.4319/lo.1987.32.5.1085
  • Brylinsky, M. 1980. Estimating the productivity of lakes and reservoirs. In: Le Cren, E.D. & Lowe-McConnell, R.H. (eds.), The Functioning of Freshwater Ecosystems: 411-454. Cambridge University Press. Cambridge.
  • Carignan, R., Planas, D. & Vis, C. 2000. Production and respiration in oligotrophic Shield lakes. Limnology and Oceanography 45: 189-199. http://dx.doi.org/10.4319/lo.2000.45.1.0189
  • Chow-Fraser, P., Lougheed, V., Thiec, V.L., Crosbie, B., Simser, L. & Lord, J. 1998. Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degradated coastal wetland of Lake Ontario. Wetlands Ecology and Management 6: 19-42. http://dx.doi.org/10.1023/A:1008491520668
  • Cronk, J.K. & Fennessy, M.S. 2001. Wetland Plants. Biology and Ecology. Lewis Publishers. Boca Ratón. http://dx.doi.org/10.1201/9781420032925
  • Cuthbert, I.D. & del Giorgio, P. 1992. Toward a standard method of measuring color in freshwater. Limnology and Oceanography 37: 1319-1326. http://dx.doi.org/10.4319/lo.1992.37.6.1319
  • Eloranta, P. 1999. Humus and water physics. In: Keskitalo, J. & Eloranta, P. (eds.), Limnology of Humic Waters: 59-74. Backhuys. Leiden.
  • ESRI, 1996. Arcview-Gis 3.0. Environmental Systems Research Institute. Redlands.
  • Geider, R.J. & Osborne, B.A. 1992. Algal Photosynthesis. Chapman and Hall. New York.
  • George, D.G., Talling, J.F. & Rigg, E. 2000. Factors influencing the temporal coherence of five lakes in the English Lake District. Freshwater Biology 43: 449-461. http://dx.doi.org/10.1046/j.1365-2427.2000.00566.x
  • Gessner, M.O., Schieferstein, B., Müller, U., Barkmann, S. & Lenfers, U.A. 1996. A partial budget of primary production carbon flows in the littoral zone of a hardwater lake. Aquatic Botany 55: 93-105. http://dx.doi.org/10.1016/S0304-3770(96)01064-9
  • Grobbelaar, J. 1985. Phytoplankton productivity in turbid waters. Journal of Plankton Research 7: 653-663. http://dx.doi.org/10.1093/plankt/7.5.653
  • Hairston, N.G. 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087-1092. http://dx.doi.org/10.4319/lo.1996.41.5.1087
  • Harris, G.P. 1973. Diel and annual cycles of net plankton photosynthesis in Lake Ontario. Journal of the Fisheries Research cBoard of Canada 30: 1779-1787.
  • Harris, G.P. 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Archiv fu.r Hydrobiologie, Ergebnisse der Limnologie 10: 1-171.
  • Harris, G.P. 1986. Phytoplankton Ecology. Chapman and Hall. London. http://dx.doi.org/10.1007/978-94-009-4081-9
  • Harris, G.P. & Lott, J.N.A. 1973. Light intensity and photosynthetic rates in phytoplankton. Journal of the Fisheries Research Board of Canada 30: 1771-1778. http://dx.doi.org/10.1139/f73-286
  • Harris, G.P. & Piccinin, B.B. 1977. Photosynthesis by natural phytoplankton populations. Archiv fu.r Hydrobiologie 80: 405-457.
  • Kirk, J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd edition. Cambridge University Press. Cambridge. http://dx.doi.org/10.1017/CBO9780511623370
  • Kufel, L. & Kufel, I. 2002. Chara beds acting as nutrient sink in shallow lakes – a review. Aquatic Botany 72: 249-260. http://dx.doi.org/10.1016/S0304-3770(01)00204-2
  • Leibowitz, S. & Vining, K.V. 2003. Temporal connectivity in a prairie pothole complex. Wetlands 23: 13-25. http://dx.doi.org/10.1672/0277-5212(2003)023[0013:TCIAPP]2.0.CO;2
  • Levine, S.N., Zehrer, R. & Burns, C.W. 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biology 50: 1515-1536. http://dx.doi.org/10.1111/j.1365-2427.2005.01420.x
  • Liboriussen, L. & Jeppesen, E. 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418-431. http://dx.doi.org/10.1046/j.1365-2427.2003.01018.x
  • Lomnicki, A., Bandola, E. & Jankowska, K. 1968. Modification of the Wiegert-Evans method for estimation of net primary production. Ecology 49: 147-149. http://dx.doi.org/10.2307/1933570
  • López-Archilla, A.I., Mollá, S., Coleto, M.C., Guerrero, M.C. & Montes, C. 2004. Ecosystem metabolism in a Mediterranean shallow lake (Laguna de Santa Olalla, Doñana National Park, SW Spain). Wetlands 24: 848-858.
  • Lund, J.W.G., Kipling, C. & Le Cren, E.D. 1957. The inverted microscope method of estimating algal numbers, and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170. http://dx.doi.org/10.1007/BF00007865
  • Manning, W.M. & Juday, C.E. 1941. The chlorophyll content and productivity of some lakes in Northeastern Wisconsin. Transactions of the Wisconsin Academy of Sciences, Arts and Letters 33: 363-393.
  • Marker, A.F.H., Nusch, E.A., Rai, H. & Riemann, B. 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie, Ergebnisse der Limnologie 14: 91-106.
  • Marra, J. 2002. Approaches to the measurement of plankton production. In: Williams, P. Le B, Thomas, D.N. & Reynolds, C.S. (eds.), Phytoplankton Productivity: 78-108. Blackwell. Oxford.
  • McCauley, E. 1984. The estimation of the abundance and biomass of zooplankton in samples. In: Downing, J.A. & Rigler, F.H. (eds.), A Manual on the Assessment of Secondary Production in Freshwaters: 228-265. Blackwell. Oxford.
  • Micheletti, S., Schanz, F. & Walsby, A.E. 1998. The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich. New Phytologist 139: 233-246. http://dx.doi.org/10.1046/j.1469-8137.1998.00196.x
  • Mitsch, W.J. & Gosselink, J.G. 2001. Wetlands. Third edition. John Wiley and Sons. New York.
  • Olrik, K. 1994. Phytoplankton Ecology. Miljøprojekt 251. Danish Environmental Protection Agency. Copenhagen.
  • Ortega-Mayagoitia, E., Rojo, C. & Armengol, J. 2000. Structure and dynamics of zooplankton in a semi-arid wetland, the National Park Las Tablas de Daimiel (Spain). Wetlands 20: 629-638. http://dx.doi.org/10.1672/0277-5212(2000)020[0629:SADOZI]2.0.CO;2
  • Ortega-Mayagoitia, E., Rojo, C. & Rodrigo, M.A. 2002. Factors masking the trophic cascade in shallow eutrophic wetlands – evidence from a microcosm study. Archiv für Hydrobiologie 155: 43-63.
  • Ortega-Mayagoitia, E., Rojo, C. & Rodrigo, M.A. 2003. Controlling factors of phytoplankton taxonomic structure in wetlands: an experimental approach. Hydrobiologia 502: 177-186. http://dx.doi.org/10.1023/B:HYDR.0000004280.74279.74
  • Rasmussen, J.B., Godbout, L. & Schallenberg, M. 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnology and Oceanography 34: 1336-1343. http://dx.doi.org/10.4319/lo.1989.34.7.1336
  • Reynolds, C.S. 2006. Ecology of Phytoplankton. Cambridge University Press. Cambridge. http://dx.doi.org/10.1017/CBO9780511542145
  • Reynolds, C.S., Huszar, V.L., Kruk, C., Naselli-Flores, L. & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417-428. http://dx.doi.org/10.1093/plankt/24.5.417
  • Robarts, R.D., Donald, D.B. & Arts, M.T. 1995. Phytoplankton primary production of three temporary Northern prairie wetlands. Canadian Journal of Fisheries and Aquatic Sciences 52: 897-902. http://dx.doi.org/10.1139/f95-090
  • Robinson, G.G.C., Gurney, S.E. & Goldsborough, L.G. 1997. The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands 17: 182-194. http://dx.doi.org/10.1007/BF03161408
  • Rodhe, W. 1958. Primärproduktion und Seetypen. Verhandlungen der Internationalen Vereinigung für Limnologie 13: 121- 141.
  • Roeder, D. 1977. Relationship between phytoplankton and periphyton communities in a central Iowa stream. Hydrobiologia 56: 145-151. http://dx.doi.org/10.1007/BF00023353
  • Rojo, C., Ortega-Mayagoitia, E., Rodrigo, M.A. & Álvarez-Cobelas, M. 2000. Phytoplankton structure and dynamics in the semiarid wetland National Park Las Tablas de Daimiel (Spain). Archiv für Hydrobiologie 148: 397-419.
  • Rott, E. 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 34-62.
  • Sánchez-Carrillo, S. & Álvarez-Cobelas, M. 2001. Nutrient dynamics and eutrophication patterns in a semiarid wetland: the effects of fluctuating hydrology. Water, Air and Soil Pollution 131: 97-118. http://dx.doi.org/10.1023/A:1011903300635
  • Sánchez-Carrillo, S. & Angeler, D.G. (eds.) 2010. Ecology of threatened semi-arid Wetlands: Long-term Research in Las Tablas de Daimiel. Springer Verlag. Berlin.
  • Sánchez-Carrillo, S., Álvarez-Cobelas, M., Cirujano, S., Riolobos, P., Moreno, M. & Rojo, C. 2000. Rainfall-driven changes in the biomass of a semiarid wetland. Verhandlungen der Internationalen Vereinigung fu.r Limnologie 27: 1690-1694.
  • Schallenberg, M. & Burns, C.W. 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influen - ces of light, nutrients and algal entrainment. Freshwater Biology 49: 143-159. http://dx.doi.org/10.1046/j.1365-2426.2003.01172.x
  • Talling, J.F. 1957. Photosynthetic characteristics of some fresh water plankton diatoms in relation to under water radiation. New Phytologist 56: 29-49. http://dx.doi.org/10.1111/j.1469-8137.1957.tb07447.x
  • Talling, J.F. 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitteilungen der Internationalen Vereinigung für Limnologie 19: 214-243.
  • Talling, J.F., Wood, R.B., Prosser, M.V. & Baxter, R.M. 1973. The upper limit of photosynthetic productivity by phytoplankton: evi dence from Ethiopian soda lakes. Freshwater Biology 3: 53-76. http://dx.doi.org/10.1111/j.1365-2427.1973.tb00062.x
  • Vymazal, J. 1995. Algae and Element Cycling in Wetlands. Lewis Publishers. Boca Ratón.
  • Waiser, M. & Robarts, R.D. 2004. Net heterotrophy in productive prairie wetlands with high DOC concentrations. Aquatic Microbial Ecology 34: 279-290. http://dx.doi.org/10.3354/ame034279
  • Walsby, A.E. 1997. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytologist 136: 189-209. http://dx.doi.org/10.1046/j.1469-8137.1997.00736.x
  • Weisse, T. 1988. Dynamics of autotrophic picoplankton in Lake Constance. Journal of Plankton Research 10: 1179-1188. http://dx.doi.org/10.1093/plankt/10.6.1179
  • Westlake, D.F., Adams, M.S., Bindloss, M.E., Ganf, G.G., Gerloff, G.C., Hammer, U.T., Javornicky´, P., Koonce, J.F., Marker, A.F.H., McCracken, M.D., Moss, B., Nauwerck, A., Pyrina, I.L., Steel, J.A.P., Tilzer, M.M. & Walters, C.J. 1980. Primary production. In: Le Cren, E.D. & Lowe-McConnell, R.H. (eds.), The Functioning of Freshwater Ecosystems: 141-246. Cambridge University Press. Cambridge.
  • Wetzel, R.G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Internationale Revue der gesamten Hydrobiologie 49: 1-61. http://dx.doi.org/10.1002/iroh.19640490102
  • Wetzel, R.G. 1990. Land-water interfaces: Metabolic and limnological regulators. Verhandlungen der Internationalen Vereinigung für Limnologie 23: 1041-1048.
  • Wetzel, R.G. 2001. Limnology. Third edition. Academic Press. San Diego.
  • Williams, P. LeB, Raine, R.C.T. & Bryan, J.R. 1979. Agreement between the 14C methods of measuring phytoplankton production: reassessment of the photosynthetic quotient. Oceanologica Acta 2: 411-416.