Modificaciones hematológicas inducidas por eritropoyetina frente a hipoxia normobárica intermitente

  1. Sanchis Gomar, Fabian
  2. Martínez Bello, Vladimir E.
  3. Martinez Bello, D. A
  4. Nascimento, Ana Lucía
  5. García Vallés, Rebeca
  6. Brioche, Thomas
  7. Ferrando Forés, Beatriz
  8. Ibáñez Sania, Sandra
  9. Pareja Galeano, Helios
  10. Gómez Cabrera, María Carmen
  11. Viña Ribes, José
Zeitschrift:
European Journal of Human Movement

ISSN: 0214-0071 2386-4095

Datum der Publikation: 2010

Nummer: 25

Seiten: 93-104

Art: Artikel

Andere Publikationen in: European Journal of Human Movement

Zusammenfassung

Recent publications reflect the anti-doping authorities¿ concern about the use of altitude simulator systems, since these technologies could be considered as doping methods. The major aim of our study was to compare the effect of two different rHuEpo treatments with a normobaric intermittent hypoxic (NIH) protocol regarding the hematologic modifications in an animal model. Twenty-four young male Wistar rats were randomly divided in 3 experimental groups: NIH group (12h pO2 12% /12h pO2 21%) (n=8); the group treated with 300 UI of rHuEpo (n=8) and the group treated with 500 UI of rHuEpo (n=8). Two blood samples were obtained in every experimental group (before and after the treatment). Our results show similar and statistically significant increments in the hemoglobin, hematocrit and reticulocytes values after 15 days of treatment with 300 UI of rHuEpo or NIH. The treatment with 500 UI of rHuEpo induced a higher increase in the hematological parameters. The main conclusion of our study is that the hematological modifications achieved with a NIH protocol were comparable with those that imply a treatment with 300 UI of rHuEpo.

Bibliographische Referenzen

  • (2006). «R Development Core Team A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.» Vienna, Austria. ISBN 3-900051-07-0. URL: http://www.R-project.org.
  • Boning, D. (2010). «Hypoxia application in athletes is not doping.» Eur J Appl Physiol 108(2): 415.
  • Carraway, M. S., H. B. Suliman, et al. «Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart.» Circ Res 106(11): 1722-1730.
  • Ferretti, G. (2010). «Of intermittent hypoxia and doping.» Eur J Appl Physiol 108(2): 413- 414.
  • Gilbert, S. (2010). «The biological passport.» Hastings Cent Rep 40(2): 18-19.
  • Gore, C. J., R. Parisotto, et al. (2003). «Second-generation blood tests to detect erythropoietin abuse by athletes.» Haematologica 88(3): 333-344.
  • Hinghofer-Szalkay, H. (2010). «Intermittent hypoxic training: risks versus benefits.» Eur J Appl Physiol 108(2): 417.
  • Levine, B. D. (2006). «Should «artificial» high altitude environments be considered doping?» Scand J Med Sci Sports 16(5): 297-301.
  • Lippi, G. and M. Franchini (2010). «Intermittent hypoxic training: doping or what?» Eur J Appl Physiol 108(2): 411-412.
  • Lippi, G., M. Franchini, et al. (2010). «Normobaric hypoxia and sports: the debate continues.» Eur J Appl Physiol.
  • Lundby, C., J. J. Thomsen, et al. (2007). «Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume.» J Physiol 578(Pt 1): 309-314.
  • Malloy, D. C., R. Kell, et al. (2007). «The spirit of sport, morality, and hypoxic tents: logic and authenticity.» Appl Physiol Nutr Metab 32(2): 289-296.
  • Parisotto, R., M. J. Ashenden, et al. (2003). «The effect of common hematologic abnormalities on the ability of blood models to detect erythropoietin abuse by athletes.» Haematologica 88(8): 931-940.
  • Parisotto, R., C. J. Gore, et al. (2000). «A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes.» Haematologica 85(6): 564-572.
  • Parisotto, R., M. Wu, et al. (2001). «Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis.» Haematologica 86(2): 128-137.
  • Sanchis-Gomar, F., V. E. Martinez-Bello, et al. (2009). «Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration.» Eur J Appl Physiol 107(4): 429-436.
  • Sanchis-Gomar, F., V. E. Martinez-Bello, et al. (2010). «It is not hypoxia itself, but how you use it.» Eur J Appl Physiol 109(2): 355-356.
  • Schmidt, W. and N. Prommer (2010). «Impact of alterations in total hemoglobin mass on VO 2max.» Exerc Sport Sci Rev 38(2): 68-75.
  • Sharpe, K., M. J. Ashenden, et al. (2006). «A third generation approach to detect erythropoietin abuse in athletes.» Haematologica 91(3): 356-363.
  • Sharpe, K., W. Hopkins, et al. (2002). «Development of reference ranges in elite athletes for markers of altered erythropoiesis.» Haematologica 87(12): 1248-1257.
  • Sottas, P. E., N. Robinson, et al. (2010). «The athlete’s biological passport and indirect markers of blood doping.» Handb Exp Pharmacol(195): 305-326.
  • Team, R. D. C. «A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.» ISBN 3-900051-07-0. URL: http://www.Rproject.org.
  • Verbrugge, D. J. and L. T. Goodnough (1994). «The effect of recombinant human erythropoietin treatment on the endurance performance of Sprague-Dawley rats.» Scand J Clin Lab Invest 54(1): 55-59.
  • Woo, S., W. Krzyzanski, et al. (2006). «Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats.» J Pharmacol Exp Ther 319(3): 1297-1306.
  • Woo, S., W. Krzyzanski, et al. (2007). «Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO).» J Pharmacokinet Pharmacodyn 34(6): 849-868.
  • Wozny, M. (2010). «The biological passport and doping in athletics.» Lancet 376(9735): 79.