Diseño y análisis de la potencia: n y los intervalos de confianza de las medias

  1. García Pérez, José Fernando
  2. Pascual Llobell, Juan
  3. Frías Navarro, María Dolores
  4. Van Krunckelsven, Dirk
  5. Murgui Pérez, Sergio
Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2008

Volumen: 20

Número: 4

Páginas: 933-938

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

En este estudio se analiza la validez del criterio del 80% de potencia estadística para que no se solapen las medias de los intervalos de confianza (IC). Varias simulaciones indican que la potencia mínima para que los límites de dos medias no se solapen, cuando el IC está en el 95%, es de 0,80; pero cuando el IC está en el 99%, es 0,86; y cuando el IC está en el 90%, es 0,75. Si hay más de dos medias, la potencia mínima aumenta considerablemente. Siendo todavía mayor este aumento cuando las medias poblacionales no aumentan monotónicamente. Por lo tanto, para garantizar que los límites no se solapen, en la mayoría de las situaciones analizadas es necesario calcular directamente el mínimo número de observaciones, siendo de poca utilidad los criterios convencionales de la potencia mínima de 0,80

Referencias bibliográficas

  • Anderson, D.R., Burnham, K.P., y Thompson, W.L. (2000). Null hypothesis testing: Problems, prevalence and an alternative. Journal of Wildlife Management, 64, 912-923.
  • Arvey, R.D., Salas, E., y Maxwell, S.E. (1992). The relative power of training evaluation designs under different cost configurations. Journal of Applied Psychology, 77, 155-160.
  • Bakan, D. (1966). Test of significance in psychological research. Psychological Bulletin, 66, 423-437.
  • Borenstein, M., Rothstein, H., y Cohen, J. (1997). Power and precision. Teaneck, NJ: Biostat.
  • Brewer, J.K. (1972). Power of statistical tests in american-educational-research-journal. American Educational Research Journal, 9, 391-401.
  • Brown, G.W. (1983). Errors, Type I and II. American Journal of Disorders in Childhood, 137, 586-591.
  • Cascio, W.F., y Zedeck, S. (1983). Open a new window in rational research planning: Adjust alpha to maximize statistical power. Personnel Psychology, 36, 517-526.
  • Cohen, J. (1962). Statistical power of abnormal-social psychological-research: A review. Journal of Abnormal Psychology, 65, 145-153.
  • Cohen, J. (1965). Some statistical issues in psychological research. En B.B. Wolman (Ed.): Handbook of clinical psychology (pp. 95-121). New York: McGraw-Hill.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: Erlbaum.
  • Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304-1312.
  • Cohen, J. (1992). Quantitative methods in psychology: A power primer. Psychological Bulletin, 112, 155-159.
  • Cohen, J. (1994). The earth is round (p-less-than .05). American Psychologist, 49(12), 997-1003.
  • Cook, T.D., y Campbell, D.T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Chicago: Rand McNally.
  • Cumming, G., y Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of data. American Psychologist, 60, 170-180.
  • Cumming, G., Williams, J., y Fidler, F. (2004). Replication and researchers’ understanding of confidence intervals and standard error bars. Understanding Statistics, 3, 299-311.
  • Erdfelder, E., Faul, F., y Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods Instruments & Computers, 28, 1-11.
  • Estes, W.K. (1997). On the communication of information by displays of standard errors and confidence intervals. Psychonomic Bulletin & Review, 4, 330-341.
  • Finch, S., Thomason, N., y Cumming, G. (2002). Past and future American Psychological Association guidelines for statistical practice. Theory & Psychology, 12, 825-853.
  • Frick, R.W. (1996). The appropriate use of null hypothesis testing. Psychological Methods, 1, 379-390.
  • García, J.F., Frías, M.D., y Pascual, J. (1999). Los diseños de la investigación experimental: comprobación de las hipótesis [Experimental research designs: Verification of hypotheses]. Valencia, Spain: Cristóbal Serrano Villalba.
  • García, J.F., Musitu, G., y Veiga, F. (2006). Autoconcepto en adultos de España y Portugal [Self-concept in adults from Spain and Portugal]. Psicothema, 18, 551-556.
  • Harlow, L.L., Mulaik, S.A., y Steiger, J.H. (1997). What if there were no significance tests? Mahwah, N.J.: Erlbaum.
  • Kraemer, H.C., y Thiemann, S. (1987). How many subjects? Statistical power analysis in research. Newbury Park, CA: Sage.
  • Martínez, I., y García, J.F. (2007). Impact of parenting styles on adolescents’ self-esteem and internalization of values in Spain. The Spanish Journal of Psychology, 10, 338-348.
  • Maxwell, S.E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences and remedies. Psychological Methods, 9, 147-163.
  • Maxwell, S.E., y Delaney, H.D. (1990). Designing experiments and analyzing data: A model comparison perspective. Belmont, CA: Wadsworth.
  • Meehl, P.E. (1978). Theoretical risks and tabular asterisks: Karl, Ronald, and slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46, 806-834.
  • Meehl, P.E. (1997). The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. En L.L. Harlow, S.A. Mulaik y L.H. Steiger (Eds.): What if there were no significance tests? (pp. 393-425). Mahwah, NJ: Erlbaum.
  • Meehl, P.E. (2002). Cliometric metatheory: II. Criteria scientists use in theory appraisal and why it is rational to do so. Psychological Reports, 91, 339-404.
  • Nagel, S.S., y Neef, M. (1977). Determining an optimum level of statistical significance. Evaluation Studies Review Annual, 2, 146-158.
  • Nickerson, R.S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5, 241-301.
  • Pérez, J.F.G., Navarro, D.F., y Llobell, J.P. (1999). Statistical power of Solomon design. Psicothema, 11, 431-436.
  • Schmidt, F.L. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers. Psychological Methods, 1, 115-129.
  • Schneider, A.L., y Darcy, R.E. (1984). Policy implications of using significance tests in evaluation research. Evaluation Review, 8, 573-582.
  • Steiger, J.H., y Fouladi, R.T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. En L.L. Harlow, S.A. Mulaik y L.H. Steiger (Eds.): What if there were no significance tests? (pp. 221- 257). Mahwah, NJ: Erlbaum.
  • Unger, T., Korade, Z., Lazarov, O., Terrano, D., Sisodia, S.S., y Mirnics, K. (2005). True and false discovery in DNA microarray experiments: Transcriptome changes in the hippocampus of presenilin 1 mutant mice. Methods, 37, 261-273.
  • Wang, Y.G., Leung, D.H., Y., Li, M., y Tan, S.B. (2005). Bayesian designs with frequentist and Bayesian error rate considerations. Statistical Methods in Medical Research, 14, 445-456.
  • Wilkinson, L., e Inference, T.F.S. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594-604.